Patents by Inventor Thomas E. Anderson

Thomas E. Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170260625
    Abstract: A multilayer substrate can include a silicon layer having an optically finished surface and a chemical vapor deposition (CVD) grown diamond layer on the optically finished surface of the silicon layer. At the interface of the silicon layer and the diamond layer, the optically finished surface of the silicon layer can have a surface roughness (Ra)?100 nm. A surface of the grown diamond layer opposite the silicon layer can be polished to an optical finish and a light management coating can be applied to the polished surface of the grown diamond layer opposite the silicon layer. A method of forming the multilayer substrate is also disclosed.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 14, 2017
    Inventors: Wen-Qing Xu, Chao Liu, Giovanni Barbarossa, Thomas E. Anderson, Elgin E. Eissler
  • Patent number: 9747617
    Abstract: Embodiments disclosed herein provide systems and methods for providing wireless device activity information to a third party based on acceptance of an offer presented to a user. In a particular embodiment, a method provides detecting an occurrence of one of a plurality of trigger conditions, wherein each of the trigger conditions corresponds to at least one activity performed by a wireless communication device. In response to detecting the occurrence, the method provides presenting a user of the wireless communication device with an offer to provide device activity information for the wireless communication device to a third party. The method further provides receiving a response to the offer from the user, wherein the response comprises an indication of whether the user desires to accept the offer.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: August 29, 2017
    Assignee: Sprint Communications Company L.P.
    Inventors: Geoffrey S. Martin, Jeffrey M. Haydon, Ryan Kent Hannebaum, Krishnakumar K. Bhaskarankutty Nair, Thomas E. Anderson
  • Patent number: 9580837
    Abstract: In a method for growing bulk SiC single crystals using chemical vapor transport, wherein silicon acts as a chemical transport agent for carbon, a growth crucible is charged with a solid carbon source material and a SiC single crystal seed disposed therein in spaced relationship. A halosilane gas, such as SiCl4 and a reducing gas, such as H2, are introduced into the crucible via separate inlets and mix in the crucible interior. The crucible is heated in a manner that encourages chemical reaction between the halosilane gas and the reducing gas leading to the chemical reduction of the halosilane gas to elemental silicon (Si) vapor. The produced Si vapor is transported to the solid carbon source material where it reacts with the solid carbon source material yielding volatile Si-bearing and C-bearing molecules.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: February 28, 2017
    Assignee: II-VI Incorporated
    Inventors: Ilya Zwieback, Varatharajan Rengarajan, Bryan K. Brouhard, Michael C. Nolan, Thomas E. Anderson
  • Publication number: 20160333472
    Abstract: In a method of forming a diamond film, substrate, or window, a silicon substrate is provided and the diamond film, substrate, or window is CVD grown on a surface of the silicon substrate. The grown diamond film, substrate, or window has an aspect ratio ?100, wherein the aspect ratio is a ratio of a largest dimension of the diamond film, substrate or window divided by a thickness of the diamond film. The silicon substrate can optionally be removed or separated from the grown diamond film, substrate, or window.
    Type: Application
    Filed: April 7, 2016
    Publication date: November 17, 2016
    Inventors: Wen-Qing Xu, Thomas E. Anderson, Giovanni Barbarossa, Elgin E. Eissler, Chao Liu, Charles D. Tanner
  • Publication number: 20160233142
    Abstract: A composite substrate includes a submount substrate of an alternating pattern of electrically insulative portions, pieces, layers or segments and electrically conductive portions, pieces, layers or segments, and a shaft, back or plate for supporting the alternating pattern of electrically insulative portions and electrically conductive portions. An active device having a P—N junction can be mounted on the submount substrate. The electrically insulative portions, pieces, layers or segments can be formed from diamond while the electrically conductive portions, pieces, layers or segments can be formed from a metal or metal alloy.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 11, 2016
    Inventors: Wen-Qing Xu, Chao Liu, Giovanni Barbarossa, Elgin E. Eissler, Thomas E. Anderson, Charles J. Kraisinger, Norbert Lichtenstein
  • Patent number: 9388509
    Abstract: In a method of forming polycrystalline SiC grain material, low-density, gas-permeable and vapor-permeable bulk carbon is positioned at a first location inside of a graphite crucible and a mixture of elemental silicon and elemental carbon is positioned at a second location inside of the graphite crucible. Thereafter, the mixture and the bulk carbon are heated to a first temperature below the melting point of the elemental Si to remove adsorbed gas, moisture and/or volatiles from the mixture and the bulk carbon. Next, the mixture and the bulk carbon are heated to a second temperature that causes the elemental Si and the elemental C to react forming as-synthesized SiC inside of the crucible. The as-synthesized SiC and the bulk carbon are then heated in a way to cause the as-synthesized SiC to sublime and produce vapors that migrate into, condense on and react with the bulk carbon forming polycrystalline SiC material.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: July 12, 2016
    Assignee: II-VI Incorporated
    Inventors: Ilya Zwieback, Avinash K. Gupta, Ping Wu, Donovan L. Barrett, Gary E. Ruland, Thomas E. Anderson
  • Publication number: 20160183532
    Abstract: Compositions and methods are provided for benefiting plant growth. The compositions contain isolated bacterial or fungal strains having properties beneficial to plant growth and development that can provide beneficial growth effects when delivered in a liquid fertilizer in combination with a soil insecticide to plants, seeds, or the soil or other growth medium surrounding the plant or seed. The beneficial growth effects include one or a combination of improved seedling vigor, improved root development, improved plant health, increased plant mass, increased yield, improved appearance, improved resistance to osmotic stress, improved resistance to abiotic stresses, or improved resistance to plant pathogens. The isolated bacterial strains include those of the Bacillus species including species such as Bacillus pumilus, Bacillus licheniformis, and Bacillus subtilis.
    Type: Application
    Filed: September 30, 2015
    Publication date: June 30, 2016
    Inventors: Safiyh Taghavi, Daniel van der Lelie, Mark R. Walmsley, Nathan Caldwell, Thomas E. Anderson, Vincent J. Spadafora, Lamar Buckelew
  • Publication number: 20160130725
    Abstract: In a method of chemical vapor deposition (CVD) growth of a polycrystalline diamond film in a CVD reactor, a gas mixture of gaseous hydrogen and a gaseous hydrocarbon is introduced into the CVD reactor. A plasma formed from the gas mixture is maintained above a surface of a conductive substrate disposed in the CVD reactor and causes a polycrystalline diamond film to grow on the surface of the conductive substrate. A temperature T at the center of the polycrystalline diamond film is controlled during growth of the polycrystalline diamond film. The CVD grown polycrystalline diamond film includes diamond crystallites that can have a percentage of orientation along a [110] diamond lattice direction ?70% of the total number of diamond crystallites forming the polycrystalline diamond film.
    Type: Application
    Filed: August 4, 2015
    Publication date: May 12, 2016
    Inventors: Wen-Qing Xu, Chao Liu, Charles J. Kraisinger, Charles D. Tanner, Ian Currier, David Sabens, Elgin E. Eissler, Thomas E. Anderson
  • Patent number: 9322110
    Abstract: A sublimation grown SiC single crystal includes vanadium dopant incorporated into the SiC single crystal structure via introduction of a gaseous vanadium compound into a growth environment of the SiC single crystal during growth of the SiC single crystal.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: April 26, 2016
    Assignee: II-VI Incorporated
    Inventors: Ilya Zwieback, Thomas E. Anderson, Avinash K. Gupta, Michael C. Nolan, Bryan K. Brouhard, Gary E. Ruland
  • Publication number: 20160060789
    Abstract: In a method for growing bulk SiC single crystals using chemical vapor transport, wherein silicon acts as a chemical transport agent for carbon, a growth crucible is charged with a solid carbon source material and a SiC single crystal seed disposed therein in spaced relationship. A halosilane gas, such as SiCl4 and a reducing gas, such as H2, are introduced into the crucible via separate inlets and mix in the crucible interior. The crucible is heated in a manner that encourages chemical reaction between the halosilane gas and the reducing gas leading to the chemical reduction of the halosilane gas to elemental silicon (Si) vapor. The produced Si vapor is transported to the solid carbon source material where it reacts with the solid carbon source material yielding volatile Si-bearing and C-bearing molecules.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 3, 2016
    Inventors: Ilya Zwieback, Varatharajan Rengarajan, Bryan K. Brouhard, Michael C. Nolan, Thomas E. Anderson
  • Patent number: 9090989
    Abstract: In a crystal growth apparatus and method, polycrystalline source material and a seed crystal are introduced into a growth ambient comprised of a growth crucible disposed inside of a furnace chamber. In the presence of a first sublimation growth pressure, a single crystal is sublimation grown on the seed crystal via precipitation of sublimated source material on the seed crystal in the presence of a flow of a first gas that includes a reactive component that reacts with and removes donor and/or acceptor background impurities from the growth ambient during said sublimation growth. Then, in the presence of a second sublimation growth pressure, the single crystal is sublimation grown on the seed crystal via precipitation of sublimated source material on the seed crystal in the presence of a flow of a second gas that includes dopant vapors, but which does not include the reactive component.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: July 28, 2015
    Assignee: II-VI Incorporated
    Inventors: Ilya Zwieback, Ping Wu, Varatharajan Rengarajan, Avinash K. Gupta, Thomas E. Anderson, Gary E. Ruland, Andrew E. Souzis, Xueping Xu
  • Publication number: 20140342914
    Abstract: The present invention is directed to a method of improving the growth of a plant comprising applying a plant growth effective amount of bifenthrin to the propagation material of such plant in the absence of insect pest pressure.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 20, 2014
    Applicant: FMC Corporation
    Inventors: Houston P. Joost, Henry Van Tuyl Cotter, Alison Burnett, Thomas E. Anderson
  • Publication number: 20140234194
    Abstract: A sublimation grown SiC single crystal includes vanadium dopant incorporated into the SiC single crystal structure via introduction of a gaseous vanadium compound into a growth environment of the SiC single crystal during growth of the SiC single crystal.
    Type: Application
    Filed: October 28, 2013
    Publication date: August 21, 2014
    Applicant: II-VI Incorporated
    Inventors: Ilya Zwieback, Thomas E. Anderson, Avinash K. Gupta, Michael C. Nolan, Bryan K. Brouhard, Gary E. Ruland
  • Publication number: 20140157744
    Abstract: A vehicle mounted leaf blower support platform is provided. The present invention comprises a substantially flat support surface, a vertical back surface to which an attachment arm is adjustably affixed, a pair of securement arms and a support bar for removably holding a conventional leaf blower in place, and a tube holder for ideally positioning the nozzle of the leaf blower supported thereon. The present invention is removably affixed to the rear portion of a riding lawnmower, or other similar vehicle, so that grass clippings and other lawn debris generated by the lawnmower is automatically blown away as the lawnmower travels across the yard by the leaf blower supported by the present invention.
    Type: Application
    Filed: December 10, 2013
    Publication date: June 12, 2014
    Inventor: Thomas E. Anderson
  • Patent number: 8741413
    Abstract: A method and system of forming large-diameter SiC single crystals suitable for fabricating high crystal quality SiC substrates of 100, 125, 150 and 200 mm in diameter are described. The SiC single crystals are grown by a seeded sublimation technique in the presence of a shallow radial temperature gradient. During SiC sublimation growth, a flux of SiC bearing vapors filtered from carbon particulates is substantially restricted to a central area of the surface of the seed crystal by a separation plate disposed between the seed crystal and a source of the SiC bearing vapors. The separation plate includes a first, substantially vapor-permeable part surrounded by a second, substantially non vapor-permeable part. The grown crystals have a flat or slightly convex growth interface. Large-diameter SiC wafers fabricated from the grown crystals exhibit low lattice curvature and low densities of crystal defects, such as stacking faults, inclusions, micropipes and dislocations.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: June 3, 2014
    Assignee: II-VI Incorporated
    Inventors: Ilya Zwieback, Thomas E. Anderson, Andrew E. Souzis, Gary E. Ruland, Avinash K. Gupta, Varatharajan Rengarajan, Ping Wu, Xueping Xu
  • Publication number: 20130320275
    Abstract: In a crystal growth apparatus and method, polycrystalline source material and a seed crystal are introduced into a growth ambient comprised of a growth crucible disposed inside of a furnace chamber. In the presence of a first sublimation growth pressure, a single crystal is sublimation grown on the seed crystal via precipitation of sublimated source material on the seed crystal in the presence of a flow of a first gas that includes a reactive component that reacts with and removes donor and/or acceptor background impurities from the growth ambient during said sublimation growth. Then, in the presence of a second sublimation growth pressure, the single crystal is sublimation grown on the seed crystal via precipitation of sublimated source material on the seed crystal in the presence of a flow of a second gas that includes dopant vapors, but which does not include the reactive component.
    Type: Application
    Filed: May 24, 2013
    Publication date: December 5, 2013
    Inventors: Ilya Zwieback, Ping Wu, Varatharajan Rengarajan, Avinash K. Gupta, Thomas E. Anderson, Gary E. Ruland, Andrew E. Souzis, Xueping Xu
  • Publication number: 20130309496
    Abstract: In a method of forming polycrystalline SiC grain material, low-density, gas-permeable and vapor-permeable bulk carbon is positioned at a first location inside of a graphite crucible and a mixture of elemental silicon and elemental carbon is positioned at a second location inside of the graphite crucible. Thereafter, the mixture and the bulk carbon are heated to a first temperature below the melting point of the elemental Si to remove adsorbed gas, moisture and/or volatiles from the mixture and the bulk carbon. Next, the mixture and the bulk carbon are heated to a second temperature that causes the elemental Si and the elemental C to react forming as-synthesized SiC inside of the crucible. The as-synthesized SiC and the bulk carbon are then heated in a way to cause the as-synthesized SiC to sublime and produce vapors that migrate into, condense on and react with the bulk carbon forming polycrystalline SiC material.
    Type: Application
    Filed: July 26, 2013
    Publication date: November 21, 2013
    Applicant: II-VI Incorporated
    Inventors: Ilya Zwieback, Avinash K. Gupta, Ping Wu, Donovan L. Barrett, Gary E. Ruland, Thomas E. Anderson
  • Publication number: 20130280466
    Abstract: A method and system of forming large-diameter SiC single crystals suitable for fabricating high crystal quality SiC substrates of 100, 125, 150 and 200 mm in diameter are described. The SiC single crystals are grown by a seeded sublimation technique in the presence of a shallow radial temperature gradient. During SiC sublimation growth, a flux of SiC bearing vapors filtered from carbon particulates is substantially restricted to a central area of the surface of the seed crystal by a separation plate disposed between the seed crystal and a source of the SiC bearing vapors. The separation plate includes a first, substantially vapor-permeable part surrounded by a second, substantially non vapor-permeable part. The grown crystals have a flat or slightly convex growth interface. Large-diameter SiC wafers fabricated from the grown crystals exhibit low lattice curvature and low densities of crystal defects, such as stacking faults, inclusions, micropipes and dislocations.
    Type: Application
    Filed: April 22, 2013
    Publication date: October 24, 2013
    Inventors: Ilya Zwieback, Thomas E. Anderson, Andrew E. Souzis, Gary E. Ruland, Avinash K. Gupta, Varatharajan Rengarajan, Ping Wu, Xueping Xu
  • Patent number: 8512471
    Abstract: In a physical vapor transport growth technique for silicon carbide a silicon carbide powder and a silicon carbide seed crystal are introduced into a physical vapor transport growth system and halosilane gas is introduced separately into the system. The source powder, the halosilane gas, and the seed crystal are heated in a manner that encourages physical vapor transport growth of silicon carbide on the seed crystal, as well as chemical transformations in the gas phase leading to reactions between halogen and chemical elements present in the growth system.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: August 20, 2013
    Assignee: II-VI Incorporated
    Inventors: Ilya Zwieback, Thomas E. Anderson, Avinash K. Gupta
  • Patent number: RE46315
    Abstract: A method and system of forming large-diameter SiC single crystals suitable for fabricating high crystal quality SiC substrates of 100, 125, 150 and 200 mm in diameter are described. The SiC single crystals are grown by a seeded sublimation technique in the presence of a shallow radial temperature gradient. During SiC sublimation growth, a flux of SiC bearing vapors filtered from carbon particulates is substantially restricted to a central area of the surface of the seed crystal by a separation plate disposed between the seed crystal and a source of the SiC bearing vapors. The separation plate includes a first, substantially vapor-permeable part surrounded by a second, substantially non vapor-permeable part. The grown crystals have a flat or slightly convex growth interface. Large-diameter SiC wafers fabricated from the grown crystals exhibit low lattice curvature and low densities of crystal defects, such as stacking faults, inclusions, micropipes and dislocations.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: February 21, 2017
    Assignee: II-VI Incorporated
    Inventors: Ilya Zwieback, Thomas E. Anderson, Andrew E. Souzis, Gary E. Ruland, Avinash K. Gupta, Varatharajan Rengarajan, Ping Wu, Xueping Xu