Patents by Inventor Thomas Hoffman

Thomas Hoffman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9832922
    Abstract: A discharge device includes a plurality of material conveying components, an adjustable shear ledge, and an adjustable shroud to convey materials from a container of a material spreader out onto an open area. The adjustable shear ledge includes at least one longitudinal mounting member such that the adjustable shear ledge may be translated towards or away from the plurality of material conveying components to maintain a predetermined gap distance. The adjustable shroud may also be pivotably connected to the adjustable shear ledge such that the adjustable shroud can be pivoted towards or away from the plurality of material conveying components. The adjustable shear ledge and the adjustable shroud may be moved accordingly to maintain a preferred gap distance and to maintain concentricity with a swing of the material conveying components in order to reduce wear on components and promote spread performance of the material spreader.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: December 5, 2017
    Assignee: KUHN NORTH AMERICA, INC.
    Inventors: Thomas Hoffman, Todd Gibson, Patrick Henry, Claude McFarlane
  • Patent number: 9738904
    Abstract: A breeding stack of soybean event 9582.814.19.1 and soybean event pDAB4468.04.16.1 resulted in the novel soybean event pDAB9582.814.19.1::pDAB4468.04.16.1. Soybean event pDAB9582.814.19.1::pDAB4468.04.16.1 comprises genes encoding AAD-12, Cry1F, Cry1Ac (synpro), and PAT, affording insect resistance and herbicide tolerance to soybean crops containing the event, and enabling methods for crop protection and protection of stored products.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: August 22, 2017
    Assignee: Dow AgroSciences LLC
    Inventors: Yunxing C. Cui, Thomas Hoffman, Dawn M. Parkhurst, Ning Zhou, Barry Wiggins, Dayakar Pareddy, Gregory A. Bradfisch, James E. Dripps, Sandra G. Toledo, Nathan Bard, Michael Vercauteren, Nandi Nagaraj, Brandon Bishop, Gregory J. Gilles, Terry R. Wright, Julissa Colon, Ricardo A. Barnes, Nathan J. VanOpdorp, Yonghe Bai
  • Patent number: 9732353
    Abstract: This invention relates to soybean event pDAB8264.42.32.1 and includes novel expression cassettes and transgenic inserts comprising multiple traits conferring resistance to glyphosate, aryloxyalkanoate, and glufosinate herbicides. This invention also relates in part to methods of controlling resistant weeds, plant breeding and herbicide tolerant plants. In some embodiments, the event sequence can be “stacked” with other traits, including, for example, other herbicide tolerance gene(s) and/or insect-inhibitory proteins. This invention further relates in part to endpoint TAQMAN PCR assays for the detection of Event pDAB8264.42.32.1 in soybeans and related plant material. Some embodiments can perform high throughput zygosity analysis of plant material and other embodiments can be used to uniquely identify the zygosity of and breed soybean lines comprising the event of the subject invention. Kits and conditions useful in conducting these assays are also provided.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: August 15, 2017
    Assignees: Dow AgroSciences LLC, M.S. Technologies, L.L.C.
    Inventors: Thomas Hoffman, Ning Zhou, Dayakar Pareddy, Yunxing Cory Cui, Dawn Marie Parkhurst, Nathan Bard, Sandra Grace Toledo, Gregory Alan Bradfisch, Bruce Held, Vaithilingam Sekar, Lauren Clark, Sean Michael Russell, Kelly Ann Smith, Yang Wang, Terry R. Wright
  • Patent number: 9695441
    Abstract: Soybean event 9582.814.19.1 comprising genes encoding Cry1F, Cry1Ac (synpro), and PAT, affording insect resistance and herbicide tolerance to soybean crops containing the event, and enabling methods for crop protection and protection of stored products.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: July 4, 2017
    Assignee: Dow AgroSciences LLC
    Inventors: Nathan Bard, Gregory A. Bradfisch, Yunxing C. Cui, James E. Dripps, Thomas Hoffman, Dayakar Pareddy, Dawn M. Parkhurst, Sandra G. Toledo, Barry Wiggins, Ning Zhou
  • Publication number: 20170112128
    Abstract: This invention relates in part to soybean event pDAB8264.44.06.1 and includes a novel expression cassettes and transgenic inserts comprising multiple traits conferring resistance to glyphosate, aryloxyalkanoate, and glufosinate herbicides. This invention also relates in part to methods of controlling resistant weeds, plant breeding and herbicide tolerant plants. In some embodiments, the event sequence can be “stacked” with other traits, including, for example, other herbicide tolerance gene(s) and/or insect-inhibitory proteins. This invention further relates in part to endpoint TaqMan PCR assays for the detection of Event pDAB8264.44.06.1 in soybeans and related plant material. Some embodiments can perform high throughput zygosity analysis of plant material and other embodiments can be used to uniquely identify the zygosity of and breed soybean lines comprising the event of the subject invention. Kits and conditions useful in conducting these assays are also provided.
    Type: Application
    Filed: January 5, 2017
    Publication date: April 27, 2017
    Inventors: Yunxing C. Cui, Thomas Hoffman, Ning Zhou, Stephen N. Novak, Julissa Colon, Dawn M. Parkhurst, Sandra G. Toledo, Terry R. Wright, Sean M. Russell, Bruce Held, Vaithilingam Sekar
  • Patent number: 9540656
    Abstract: This invention relates to soybean event pDAB8291.45.36.2, which includes a novel expression cassette comprising multiple traits conferring resistance to glyphosate, aryloxyalkanoate, and glufosinate herbicides. This invention also relates in part to methods of controlling resistant weeds, plant breeding, and herbicide tolerant plants. In some embodiments, the event sequence can be “stacked” with other traits, including, for example, other herbicide tolerance gene(s) and/or insect-inhibitory proteins. This invention further relates in part to detection methods, including endpoint TaqMan PCR assays, for the detection of Event pDAB8291.45.36.2 in soybeans and related plant material. Some embodiments can perform high throughput zygosity analysis of plant material and other embodiments can be used to uniquely identify the zygosity of and breed soybean lines comprising the event of the subject invention. Kits and conditions useful in conducting these assays are also provided.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: January 10, 2017
    Assignee: Dow AgroSciences LLC
    Inventors: Yunxing Cory Cui, Thomas Hoffman, Ning Zhou, Stephen Novak, Julissa Colon, Dawn M. Parkhurst, Sandra Grace Toledo, Terry R. Wright, Sean Michael Russell, Bruce Held, Vaithilingam Sekar
  • Patent number: 9540655
    Abstract: This invention relates in part to soybean event pDAB8264.44.06.1 and includes a novel expression cassettes and transgenic inserts comprising multiple traits conferring resistance to glyphosate, aryloxyalkanoate, and glufosinate herbicides. This invention also relates in part to methods of controlling resistant weeds, plant breeding and herbicide tolerant plants. In some embodiments, the event sequence can be “stacked” with other traits, including, for example, other herbicide tolerance gene(s) and/or insect-inhibitory proteins. This invention further relates in part to endpoint TaqMan PCR assays for the detection of Event pDAB8264.44.06.1 in soybeans and related plant material. Some embodiments can perform high throughput zygosity analysis of plant material and other embodiments can be used to uniquely identify the zygosity of and breed soybean lines comprising the event of the subject invention. Kits and conditions useful in conducting these assays are also provided.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: January 10, 2017
    Assignees: Dow AgroSciences LLC, MS Technologies, L.L.C.
    Inventors: Yunxing Cui, Thomas Hoffman, Ning Zhou, Stephen N. Novak, Julissa Colon, Dawn Parkhurst, Sandra Toledo, Terry Wright, Sean Russell, Bruce Held, Vaithilingam Sekar
  • Publication number: 20160336446
    Abstract: An embodiment of the invention reduces the external resistance of a transistor by utilizing a silicon germanium alloy for the source and drain regions and a nickel silicon germanium self-aligned silicide (i.e., salicide) layer to form the contact surface of the source and drain regions. The interface of the silicon germanium and the nickel silicon germanium silicide has a lower specific contact resistivity based on a decreased metal-semiconductor work function between the silicon germanium and the silicide and the increased carrier mobility in silicon germanium versus silicon. The silicon germanium may be doped to further tune its electrical properties. A reduction of the external resistance of a transistor equates to increased transistor performance both in switching speed and power consumption.
    Type: Application
    Filed: July 26, 2016
    Publication date: November 17, 2016
    Inventors: Anand Murthy, Boyan Boyanov, Glenn A. Glass, Thomas Hoffman
  • Publication number: 20160336447
    Abstract: An embodiment of the invention reduces the external resistance of a transistor by utilizing a silicon germanium alloy for the source and drain regions and a nickel silicon germanium self-aligned silicide (i.e., salicide) layer to form the contact surface of the source and drain regions. The interface of the silicon germanium and the nickel silicon germanium silicide has a lower specific contact resistivity based on a decreased metal-semiconductor work function between the silicon germanium and the silicide and the increased carrier mobility in silicon germanium versus silicon. The silicon germanium may be doped to further tune its electrical properties. A reduction of the external resistance of a transistor equates to increased transistor performance both in switching speed and power consumption.
    Type: Application
    Filed: July 26, 2016
    Publication date: November 17, 2016
    Inventors: Anand MURTHY, Boyan BOYANOV, Glenn A. GLASS, Thomas HOFFMAN
  • Publication number: 20160295862
    Abstract: This invention is related to methods for improving plant height and/or yield of crop plants that are resistant to herbicide 2,4-D by treating the plants with 2,4-D at application rates which are not harmful to the plants. In particular, provided is a method using 2,4-D application to increase yield of crop plants that express an AAD-12 gene for 2,4-D resistance. Soybeans are a preferred crop for use according to the subject invention.
    Type: Application
    Filed: June 16, 2016
    Publication date: October 13, 2016
    Inventors: Thomas HOFFMAN, Yunxing CUI, Malcolm OBOURN, Dawn PARKHURST, Barry WIGGINS, Michael VERCAUTEREN, Terrence Anthony WALSH
  • Patent number: 9437710
    Abstract: An embodiment of the invention reduces the external resistance of a transistor by utilizing a silicon germanium alloy for the source and drain regions and a nickel silicon germanium self-aligned silicide (i.e., salicide) layer to form the contact surface of the source and drain regions. The interface of the silicon germanium and the nickel silicon germanium silicide has a lower specific contact resistivity based on a decreased metal-semiconductor work function between the silicon germanium and the silicide and the increased carrier mobility in silicon germanium versus silicon. The silicon germanium may be doped to further tune its electrical properties. A reduction of the external resistance of a transistor equates to increased transistor performance both in switching speed and power consumption.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: September 6, 2016
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Boyan Boyanov, Glenn A. Glass, Thomas Hoffman
  • Patent number: 9377097
    Abstract: A drive system includes a drive housing and one or more drivetrain cartridges. The one or more drivetrain cartridges enables better manufacturability by allowing drivetrain components to be installed together outside the housing and then installed as a unit together into the housing. Serviceability is improved by allowing one or more of the drivetrain cartridges to be removed individually from the housing for maintenance or repair. The housing may include mounting surfaces to securely engage the one or more drivetrain cartridges to the housing to prevent play. The housing may include a bottom or side panel with installation mounts to fasten the drivetrain cartridge or cartridges securely to the bottom or side panel of the housing.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: June 28, 2016
    Assignee: KUHN NORTH AMERICA, INC.
    Inventors: Thomas Hoffman, Todd Gibson, Casey Fennell, Patrick Henry
  • Patent number: 9202889
    Abstract: An embodiment of the invention reduces the external resistance of a transistor by utilizing a silicon germanium alloy for the source and drain regions and a nickel silicon germanium self-aligned silicide (i.e., salicide) layer to form the contact surface of the source and drain regions. The interface of the silicon germanium and the nickel silicon germanium silicide has a lower specific contact resistivity based on a decreased metal-semiconductor work function between the silicon germanium and the silicide and the increased carrier mobility in silicon germanium versus silicon. The silicon germanium may be doped to further tune its electrical properties. A reduction of the external resistance of a transistor equates to increased transistor performance both in switching speed and power consumption.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: December 1, 2015
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Boyan Boyanov, Glenn A Glass, Thomas Hoffman
  • Publication number: 20150335017
    Abstract: Soybean event 9582.816.15.1 comprises genes encoding Cry1F, Cry1Ac (synpro), and PAT, affording insect resistance and herbicide tolerance to soybean crops containing the event, and enabling methods for crop protection and protection of stored products. Embodiments of the present disclosure relate to a new insect resistant and herbicide tolerant transgenic soybean transformation event, designated soybean event pDAB9582.816.15.1, comprising cry1F v3 (cry1F), cry1Ac synpro (cry1Ac) and pat v6 (pat), as described herein, inserted into a specific site within the genome of a soybean cell. Representative soybean seed has been deposited with American Type Culture Collection (ATCC) with the Accession No. ATCC Deposit No. PTA-12588. The DNA of soybean plants containing this event includes the junction/flanking sequences described herein that characterize the location of the inserted DNA within the soybean genome.
    Type: Application
    Filed: June 25, 2013
    Publication date: November 26, 2015
    Inventors: Nathan Bard, Gregory A. Bradfisch, Yunxing Cory Cui, James E. Dripps, Thomas Hoffman, Dayakar Pareddy, Dawn M. Parkhurst, Sandra G. Toledo, Barry Wiggins, Ning Zhou, Aaron T. Woosley
  • Publication number: 20150250092
    Abstract: A discharge device includes a plurality of material conveying components, an adjustable shear ledge, and an adjustable shroud to convey materials from a container of a material spreader out onto an open area. The adjustable shear ledge includes at least one longitudinal mounting member such that the adjustable shear ledge may be translated towards or away from the plurality of material conveying components to maintain a predetermined gap distance. The adjustable shroud may also be pivotably connected to the adjustable shear ledge such that the adjustable shroud can be pivoted towards or away from the plurality of material conveying components. The adjustable shear ledge and the adjustable shroud may be moved accordingly to maintain a preferred gap distance and to maintain concentricity with a swing of the material conveying components in order to reduce wear on components and promote spread performance of the material spreader.
    Type: Application
    Filed: February 13, 2015
    Publication date: September 10, 2015
    Applicant: KUHN NORTH AMERICA, INC.
    Inventors: Thomas HOFFMAN, Todd GIBSON, Patrick HENRY, Claude MCFARLANE
  • Publication number: 20150240934
    Abstract: A drive system includes a drive housing and one or more drivetrain cartridges. The one or more drivetrain cartridges enables better manufacturability by allowing drivetrain components to be installed together outside the housing and then installed as a unit together into the housing. Serviceability is improved by allowing one or more of the drivetrain cartridges to be removed individually from the housing for maintenance or repair. The housing may include mounting surfaces to securely engage the one or more drivetrain cartridges to the housing to prevent play. The housing may include a bottom or side panel with installation mounts to fasten the drivetrain cartridge or cartridges securely to the bottom or side panel of the housing.
    Type: Application
    Filed: February 21, 2014
    Publication date: August 27, 2015
    Applicant: Kuhn North America, Inc.
    Inventors: Thomas Hoffman, Todd Gibson, Casey Fennell, Patrick Henry
  • Publication number: 20150108546
    Abstract: An embodiment of the invention reduces the external resistance of a transistor by utilizing a silicon germanium alloy for the source and drain regions and a nickel silicon germanium self-aligned silicide (i.e., salicide) layer to form the contact surface of the source and drain regions. The interface of the silicon germanium and the nickel silicon germanium silicide has a lower specific contact resistivity based on a decreased metal-semiconductor work function between the silicon germanium and the silicide and the increased carrier mobility in silicon germanium versus silicon. The silicon germanium may be doped to further tune its electrical properties. A reduction of the external resistance of a transistor equates to increased transistor performance both in switching speed and power consumption.
    Type: Application
    Filed: December 24, 2014
    Publication date: April 23, 2015
    Inventors: Anand MURTHY, Boyan Boyanov, Glen A. Glass, Thomas Hoffman
  • Publication number: 20140344994
    Abstract: A breeding stack of soybean event 9582.814.19.1 and soybean event pDAB4468.04.16.1 resulted in the novel soybean event pDAB9582.814.19.1 :: pDAB4468.04.16.1. Soybean event pDAB9582.814.19.1 :: pDAB4468.04.16.1 comprises genes encoding AAD-12, CrylF, CrylAc (synpro), and PAT, affording insect resistance and herbicide tolerance to soybean crops containing the event, and enabling methods for crop protection and protection of stored products.
    Type: Application
    Filed: July 26, 2012
    Publication date: November 20, 2014
    Applicant: DOW AGROSCIENCES LLC
    Inventors: Yunxing C. Cui, Thomas Hoffman, Dawn M. Parkhurst, Ning Zhou, Barry Wiggins, Dayakar Pareddy, Gregory A. Bradfisch, James E. Dripps, Sandra G. Toledo, Nathan Bard, Michael Vercauteren, Nandi Nagaraj, Brandon Bishop, Gregory J. Gilles, Terry R. Wright, Julissa Colon, Ricardo A. Barnes, Nathan J. VanOpdorp, Yonghe Bai
  • Publication number: 20140288995
    Abstract: A system includes a processor, a memory and a user interface. The processor has an input port to receive node data, path data, and spatial data. The node data corresponds to nodes in a system. A node is associated with a facility in a food supply chain. The path data corresponds to connectivity between nodes along paths. The paths are associated with nodes in the food supply chain. The spatial data corresponds to nodes or paths. The memory stores executable instructions for accessing risk data associated with at a node, a path, or a food item. The instructions generate output data based on the node data, the path data, the spatial data, and the risk data. The output corresponds to criticality of the food supply chain. The user interface receives user-selected input data as to the food supply chain and provides the output data.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 25, 2014
    Applicant: Regents of the University of Minnesota
    Inventors: Andrew George Huff, Shaun P. Kennedy, Amy Lynn Kircher, John Thomas Hoffman
  • Patent number: 8785728
    Abstract: This invention relates to soybean event pDAB4472-1606 (Event 1606). This invention includes a novel aad-12 transformation event in soybean plants comprising a polynucleotide sequence, as described herein, inserted into a specific site within the genome of a soybean cell. This invention also relates in part to plant breeding and herbicide tolerant plants. In some embodiments, said event/polynucleotide sequence can be “stacked” with other traits, including, for example, other herbicide tolerance gene(s) and/or insect-inhibitory proteins.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: July 22, 2014
    Assignee: Dow AgroSciences, LLC.
    Inventors: Yunxing C. Cui, Thomas Hoffman, Ning Zhou, Gregory J. Gilles, Terry R. Wright, Dawn M. Parkhurst, Julissa Colon, Yonghe Bai