Patents by Inventor Thomas Laidig

Thomas Laidig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10409172
    Abstract: Embodiments of the present disclosure generally relate to apparatuses and systems for performing photolithography processes. More particularly, compact apparatuses for projecting an image onto a substrate are provided. In one embodiment, an image projection apparatus includes a light pipe coupled to a first mounting plate, and a frustrated prism assembly, one or more digital micro-mirror devices, one or more beamsplitters, and one or more projection optics, which are coupled to a second mounting plate. The first and second mounting plates are coplanar, such that the image projection apparatus is compact and may be aligned in a system having a plurality of image projection apparatuses, each of which is easily removable and replaceable.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: September 10, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: David Markle, Thomas Laidig, Timothy N. Thomas
  • Patent number: 10037589
    Abstract: System and method for a parallel image processing mechanism for applying mask data patterns to substrate in a lithography manufacturing process are disclosed. In one embodiment, the parallel image processing system includes a graphics engine configured to partition an object into a plurality of trapezoids and form an edge list for representing each of the plurality of trapezoids, and a distributor configured to receive the edge list from the graphics engine and distribute the edge list to a plurality of scan line image processing units. The system further includes a sentinel configured to synchronize operations of the plurality of scan line image processing units, and a plurality of buffers configured to store image data from corresponding scan line image processing units and outputs the stored image data using the sentinel.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: July 31, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Barry Keane, Thomas Laidig
  • Patent number: 10036966
    Abstract: Embodiments of the present disclosure generally relate to systems and methods for performing photolithography processes. In one embodiment, laminar gas flow is provided inside a photolithography system during operation. With laminar gas flow instead of turbulent gas flow inside the system, accuracy of the measurement of the location of a substrate disposed inside the system is improved due to the improved signal integrity of interferometers.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: July 31, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Benjamin M. Johnston, John White, Thomas Laidig
  • Patent number: 10031427
    Abstract: Systems and apparatus for performing photolithography processes are described. The system and apparatus may comprise a slab, at least one stage disposed on the slab, and a vibration damping system disposed on the slab, the vibration damping system comprising a weight that is substantially equal to a weight of one of the at least one stage and a substrate that moves simultaneously with movement of the one of the at least one stage.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: July 24, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Benjamin M. Johnston, Jeffrey Kaskey, Thomas Laidig
  • Patent number: 9907152
    Abstract: An illumination system and methods for controlling the illumination system are provided. In one embodiment, the method includes providing a plurality of illumination sources, monitoring optical output power of the plurality of illumination sources over a period of time, and controlling the plurality of illumination sources to maintain a predetermined level of optical output power. The method further includes compensating for degradations of one or more of the plurality of illumination sources to maintain the predetermined level of optical output power, predicting a lifetime of the illumination system based on the parameters of the plurality of illumination sources, and performing periodic maintenance of the plurality of illumination sources according to a quality control schedule.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: February 27, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jeffrey Kaskey, Thomas Laidig, David Markle, Jang Fung Chen
  • Patent number: 9733573
    Abstract: A spatial light modulator imaging system is disclosed. The system comprises an illumination module configured to provide illumination light representing data patterns to be imaged by the spatial light modulator imaging system, a projection module configured to project the illumination light to a substrate, and an illumination-projection beam separator coupled between the illumination module and the projection module, where the illumination-projection beam separator is configured to receive the illumination light along an illumination optical axis and transmit the illumination light received to the projection module along a projection optical axis, and where the illumination optical axis and the projection optical axis are substantially parallel to each other.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: August 15, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: David Markle, Thomas Laidig, Jeffrey Kaskey, Jang Fung Chen
  • Publication number: 20170219934
    Abstract: Embodiments of the present disclosure generally relate to apparatuses and systems for performing photolithography processes. More particularly, compact apparatuses for projecting an image onto a substrate are provided. In one embodiment, an image projection apparatus includes a light pipe coupled to a first mounting plate, and a frustrated prism assembly, one or more digital micro-mirror devices, one or more beamsplitters, and one or more projection optics, which are coupled to a second mounting plate. The first and second mounting plates are coplanar, such that the image projection apparatus is compact and may be aligned in a system having a plurality of image projection apparatuses, each of which is easily removable and replaceable.
    Type: Application
    Filed: January 23, 2017
    Publication date: August 3, 2017
    Inventors: David MARKLE, Thomas LAIDIG, Timothy N. THOMAS
  • Publication number: 20170168403
    Abstract: Embodiments of the present disclosure generally relate to systems and methods for performing photolithography processes. In one embodiment, laminar gas flow is provided inside a photolithography system during operation. With laminar gas flow instead of turbulent gas flow inside the system, accuracy of the measurement of the location of a substrate disposed inside the system is improved due to the improved signal integrity of interferometers.
    Type: Application
    Filed: November 30, 2016
    Publication date: June 15, 2017
    Inventors: Benjamin M. JOHNSTON, John WHITE, Thomas LAIDIG
  • Publication number: 20170090303
    Abstract: Systems and apparatus for performing photolithography processes are described. The system and apparatus may comprise a slab, at least one stage disposed on the slab, and a vibration damping system disposed on the slab, the vibration damping system comprising a weight that is substantially equal to a weight of one of the at least one stage and a substrate that moves simultaneously with movement of the one of the at least one stage.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 30, 2017
    Inventors: Benjamin M. JOHNSTON, Jeffrey KASKEY, Thomas LAIDIG
  • Patent number: 9519226
    Abstract: System and method for applying mask data patterns to substrate in a lithography manufacturing process are disclosed. In one embodiment, a parallel imaging writer system comprises a plurality of spatial light modulator (SLM) imaging units, and a controller configured to control the plurality of SLM imaging units. Each of the plurality of SLM imaging units includes one or more illumination sources, one or more alignment sources, one or more projection lenses, and a plurality of micro mirrors configured to project light from the one or more illumination sources to the corresponding one or more projection lens. The controller synchronizes movements of the plurality of SLM imaging units with movement of a substrate in writing a mask data to the substrate in a lithography manufacturing process.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: December 13, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jang Fung Chen, Thomas Laidig
  • Patent number: 9507271
    Abstract: System and method for manufacturing multiple light emitting diodes in parallel are disclosed. In one embodiment, the method includes providing an imaging writer system that includes a plurality of spatial light modulator (SLM) imaging units arranged in one or more parallel arrays, providing one or more substrates corresponding to multiple LEDs to be manufactured, receiving mask data to be written to the one or more substrates corresponding to the multiple LEDs, processing the mask data to form a plurality of partitioned mask data patterns corresponding to the plurality substrates of the multiple LEDs, assigning one or more SLM imaging units to handle each of the partitioned mask data pattern, and controlling the plurality of SLM imaging units to write the plurality of partitioned mask data patterns to the plurality substrates of the multiple LEDs in parallel.
    Type: Grant
    Filed: September 3, 2011
    Date of Patent: November 29, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jang Fung Chen, Thomas Laidig
  • Patent number: 9405203
    Abstract: System and method for applying mask data patterns to substrate in a lithography manufacturing process are disclosed. In one embodiment, the method includes providing a parallel imaging writer system, where the parallel imaging writer system includes a plurality of multiple charged-particle beam (MCB) imaging units arranged in one or more parallel arrays, receiving a mask data pattern to be written to a substrate, processing the mask data pattern to form a plurality of partitioned mask data patterns corresponding to different areas of the substrate, identifying one or more objects in an area of the substrate to be imaged by corresponding MCB imaging units, and performing multiple exposures to image the one or more objects in the area of the substrate by controlling the plurality of MCB imaging units to write the plurality of partitioned mask data patterns in parallel.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: August 2, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jang Fung Chen, Thomas Laidig
  • Publication number: 20160219684
    Abstract: An illumination system and methods for controlling the illumination system are provided. In one embodiment, the method includes providing a plurality of illumination sources, monitoring optical output power of the plurality of illumination sources over a period of time, and controlling the plurality of illumination sources to maintain a predetermined level of optical output power. The method further includes compensating for degradations of one or more of the plurality of illumination sources to maintain the predetermined level of optical output power, predicting a lifetime of the illumination system based on the parameters of the plurality of illumination sources, and performing periodic maintenance of the plurality of illumination sources according to a quality control schedule.
    Type: Application
    Filed: March 31, 2016
    Publication date: July 28, 2016
    Inventors: Jeffrey KASKEY, Thomas LAIDIG, David MARKLE, Jang Fung CHEN
  • Publication number: 20160124316
    Abstract: A spatial light modulator imaging system is disclosed. The system comprises an illumination module configured to provide illumination light representing data patterns to be imaged by the spatial light modulator imaging system, a projection module configured to project the illumination light to a substrate, and an illumination-projection beam separator coupled between the illumination module and the projection module, where the illumination-projection beam separator is configured to receive the illumination light along an illumination optical axis and transmit the illumination light received to the projection module along a projection optical axis, and where the illumination optical axis and the projection optical axis are substantially parallel to each other.
    Type: Application
    Filed: January 11, 2016
    Publication date: May 5, 2016
    Inventors: David MARKLE, Thomas LAIDIG, Jeffrey KASKEY, Jang Fung CHEN
  • Patent number: 9250509
    Abstract: A spatial light modulator imaging system is disclosed. The system comprises an illumination module configured to provide illumination light representing data patterns to be imaged by the spatial light modulator imaging system, a projection module configured to project the illumination light to a substrate, and an illumination-projection beam separator coupled between the illumination module and the projection module, where the illumination-projection beam separator is configured to receive the illumination light along an illumination optical axis and transmit the illumination light received to the projection module along a projection optical axis, and where the illumination optical axis and the projection optical axis are substantially parallel to each other.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: February 2, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: David Markle, Thomas Laidig, Jeffrey Kaskey, Jang Fung Chen
  • Patent number: 9158190
    Abstract: System and method for applying mask data patterns to substrate in a lithography manufacturing process are disclosed. In one embodiment, a parallel imaging writer system includes a plurality of spatial light modulator (SLM) imaging units, where each of the plurality of SLM imaging units includes one or more illumination sources, one or more alignment sources, one or more projection lenses, and a plurality of micro mirrors configured to project light from the one or more illumination sources to the corresponding one or more projection lens. The parallel imaging writer system further includes a controller configured to control the plurality of SLM imaging units, where the controller tunes each of the SLM imaging unit individually in writing a mask data to a substrate.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: October 13, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jang Fung Chen, Thomas Laidig
  • Patent number: 9025136
    Abstract: System and method for manufacturing three-dimensional integrated circuits are disclosed. In one embodiment, the method includes providing an imaging writer system that includes a plurality of spatial light modulator (SLM) imaging units arranged in one or more parallel arrays, receiving mask data to be written to one or more layers of the three-dimensional integrated circuit, processing the mask data to form a plurality of partitioned mask data patterns corresponding to the one or more layers of the three-dimensional integrated circuit, assigning one or more SLM imaging units to handle each of the partitioned mask data pattern, and controlling the plurality of SLM imaging units to write the plurality of partitioned mask data patterns to the one or more layers of the three-dimensional integrated circuits in parallel. The method of assigning performs at least one of scaling, alignment, inter-ocular displacement, rotational factor, or substrate deformation correction.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: May 5, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Jang Fung Chen, Thomas Laidig
  • Patent number: 8914143
    Abstract: System and method for handling substrates in a lithography manufacturing process are disclosed. In one embodiment, a system for handling substrates in a lithography manufacturing process includes a plurality of porous chucks positioned above a substrate for imaging, a plurality of pressure sources configured to apply pressured air towards the substrate through the plurality of porous chucks, a plurality of vacuums configured to apply suction force away from the substrate, and a controller with control logic configured to hold the substrate in place by controlling the pressured air applied by the plurality of pressure sources and the suction force generated by the plurality of vacuums.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: December 16, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Kaskey, Thomas Laidig, Dave Markle, Jang-Fung Chen
  • Publication number: 20140192336
    Abstract: System and method for applying mask data patterns to substrate in a lithography manufacturing process are disclosed. In one embodiment, a parallel imaging writer system comprises a plurality of spatial light modulator (SLM) imaging units, and a controller configured to control the plurality of SLM imaging units. Each of the plurality of SLM imaging units includes one or more illumination sources, one or more alignment sources, one or more projection lenses, and a plurality of micro mirrors configured to project light from the one or more illumination sources to the corresponding one or more projection lens. The controller synchronizes movements of the plurality of SLM imaging units with movement of a substrate in writing a mask data to the substrate in a lithography manufacturing process.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: PineBrook Imaging, Inc.
    Inventors: Jang Fung CHEN, Thomas LAIDIG
  • Publication number: 20140192334
    Abstract: System and method for applying mask data patterns to substrate in a lithography manufacturing process are disclosed. In one embodiment, the method includes providing a parallel imaging writer system, where the parallel imaging writer system includes a plurality of multiple charged-particle beam (MCB) imaging units arranged in one or more parallel arrays, receiving a mask data pattern to be written to a substrate, processing the mask data pattern to form a plurality of partitioned mask data patterns corresponding to different areas of the substrate, identifying one or more objects in an area of the substrate to be imaged by corresponding MCB imaging units, and performing multiple exposures to image the one or more objects in the area of the substrate by controlling the plurality of MCB imaging units to write the plurality of partitioned mask data patterns in parallel.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: PineBrook Imaging, Inc.
    Inventors: Jang Fung CHEN, Thomas Laidig