Patents by Inventor Thuy B. Dao

Thuy B. Dao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9871008
    Abstract: Low Q associated with passive components of monolithic integrated circuits (ICs) when operated at microwave frequencies can be avoided or mitigated using high resistivity (e.g., ?100 Ohm-cm) semiconductor substrates and lower resistance inductors for the IC. This eliminates significant in-substrate electromagnetic coupling losses from planar inductors and interconnections overlying the substrate. The active transistor(s) are formed in the substrate proximate the front face. Planar capacitors are also formed over the front face of the substrate. Various terminals of the transistor(s), capacitor(s) and inductor(s) are coupled to a ground plane on the rear face of the substrate using through-substrate-vias to minimize parasitic resistance. Parasitic resistance associated with the planar inductors and heavy current carrying conductors is minimized by placing them on the outer surface of the IC where they can be made substantially thicker and of lower resistance.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: January 16, 2018
    Assignee: NXP USA, INC.
    Inventors: Paul W. Sanders, Wayne R. Burger, Thuy B. Dao, Joel E. Keys, Michael F. Petras, Robert A. Pryor, Xiaowei Ren
  • Publication number: 20170077051
    Abstract: Low Q associated with passive components of monolithic integrated circuits (ICs) when operated at microwave frequencies can be avoided or mitigated using high resistivity (e.g., ?100 Ohm-cm) semiconductor substrates and lower resistance inductors for the IC. This eliminates significant in-substrate electromagnetic coupling losses from planar inductors and interconnections overlying the substrate. The active transistor(s) are formed in the substrate proximate the front face. Planar capacitors are also formed over the front face of the substrate. Various terminals of the transistor(s), capacitor(s) and inductor(s) are coupled to a ground plane on the rear face of the substrate using through-substrate-vias to minimize parasitic resistance. Parasitic resistance associated with the planar inductors and heavy current carrying conductors is minimized by placing them on the outer surface of the IC where they can be made substantially thicker and of lower resistance.
    Type: Application
    Filed: November 4, 2016
    Publication date: March 16, 2017
    Inventors: Paul W. Sanders, Wayne R. Burger, Thuy B. Dao, Joel E. Keys, Michael F. Petras, Robert A. Pryor, Xiaowei Ren
  • Patent number: 9508599
    Abstract: Low Q associated with passive components of monolithic integrated circuits (ICs) when operated at microwave frequencies can be avoided or mitigated using high resistivity (e.g., ?100 Ohm-cm) semiconductor substrates and lower resistance inductors for the IC. This eliminates significant in-substrate electromagnetic coupling losses from planar inductors and interconnections overlying the substrate. The active transistor(s) are formed in the substrate proximate the front face. Planar capacitors are also formed over the front face (63) of the substrate. Various terminals of the transistor(s), capacitor(s) and inductor(s) are coupled to a ground plane on the rear face of the substrate using through-substrate-vias to minimize parasitic resistance. Parasitic resistance associated with the planar inductors and heavy current carrying conductors is minimized by placing them on the outer surface of the IC where they can be made substantially thicker and of lower resistance.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: November 29, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Paul W. Sanders, Wayne R. Burger, Thuy B. Dao, Joel E. Keys, Michael F. Petras, Robert A. Pryor, Xiaowei Ren
  • Publication number: 20150228545
    Abstract: Low Q associated with passive components of monolithic integrated circuits (ICs) when operated at microwave frequencies can be avoided or mitigated using high resistivity (e.g., ?100 Ohm-cm) semiconductor substrates and lower resistance inductors for the IC. This eliminates significant in-substrate electromagnetic coupling losses from planar inductors and interconnections overlying the substrate. The active transistor(s) are formed in the substrate proximate the front face. Planar capacitors are also formed over the front face (63) of the substrate. Various terminals of the transistor(s), capacitor(s) and inductor(s) are coupled to a ground plane on the rear face of the substrate using through-substrate-vias to minimize parasitic resistance. Parasitic resistance associated with the planar inductors and heavy current carrying conductors is minimized by placing them on the outer surface of the IC where they can be made substantially thicker and of lower resistance.
    Type: Application
    Filed: April 22, 2015
    Publication date: August 13, 2015
    Inventors: PAUL W. SANDERS, WAYNE R. BURGER, THUY B. DAO, JOEL E. KEYS, MICHAEL F. PETRAS, ROBERT A. PRYOR, XIAOWEI REN
  • Patent number: 9064712
    Abstract: Low Q associated with passive components of monolithic integrated circuits (ICs) when operated at microwave frequencies can be avoided or mitigated using high resistivity (e.g., ?100 Ohm-cm) semiconductor substrates (60) and lower resistance inductors (44?, 45?) for the IC (46). This eliminates significant in-substrate electromagnetic coupling losses from planar inductors (44, 45) and interconnections (50-1?, 52-1?, 94, 94?, 94?) overlying the substrate (60). The active transistor(s) (41?) are formed in the substrate (60) proximate the front face (63). Planar capacitors (42?, 43?) are also formed over the front face (63) of the substrate (60). Various terminals (42-1?, 42-2?, 43-1, 43-2?,50?, 51?, 52?, 42-1?, 42-2?, etc.) of the transistor(s) (41?), capacitor(s) (42?, 43?) and inductor(s) (44?, 45?) are coupled to a ground plane (69) on the rear face (62) of the substrate (60) using through-substrate-vias (98, 98?) to minimize parasitic resistance.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: June 23, 2015
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventors: Paul W. Sanders, Wayne R. Burger, Thuy B. Dao, Joel E. Keys, Michael F. Petras, Robert A. Pryor, Xiaowei Ren
  • Patent number: 8890324
    Abstract: A structure having a substrate includes an opening in the substrate having depth from a top surface of the substrate to a bottom surface of the substrate. A conductive material fills the opening. The opening has a length direction and a width direction and a first and second feature. The first feature and the second feature are spaced apart by a first length. The first feature has first width as a maximum width of the first feature, and the second feature has a second width as the maximum width of the second feature. The opening has a minimum width between the first feature and the second feature that is no more than one fifth the first length. The first width and the second width are each at least twice the minimum width.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: November 18, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Thuy B. Dao
  • Patent number: 8530972
    Abstract: A method is provided for making a semiconductor device, which comprises (a) providing a semiconductor structure comprising a top gate (228) and a bottom gate (240); (b) creating first (251), second and third (252) openings in the semiconductor structure, wherein the first opening exposes a portion of the bottom gate; (c) filling the first, second and third openings with a conductive material, thereby forming source (258) and drain (260) regions in the second and third openings and a conductive region (253) in the first opening; and (d) forming an electrical contact (278) to the conductive region.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: September 10, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jay P. John, Thuy B. Dao
  • Patent number: 8518764
    Abstract: A semiconductor device structure includes a substrate having a background doping of a first concentration and of a first conductivity type. A through substrate via (TSV) is through the substrate. A device has a first doped region of a second conductivity on a first side of the substrate. A second doped region is around the TSV. The second doped region has a doping of a second concentration greater than the first concentration and is of the first conductivity type.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: August 27, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Thuy B. Dao, Joel E. Keys, Hernan A. Rueda, Paul W. Sanders
  • Publication number: 20130099312
    Abstract: A semiconductor device structure includes a substrate having a background doping of a first concentration and of a first conductivity type. A through substrate via (TSV) is through the substrate. A device has a first doped region of a second conductivity on a first side of the substrate. A second doped region is around the TSV. The second doped region has a doping of a second concentration greater than the first concentration and is of the first conductivity type.
    Type: Application
    Filed: October 24, 2011
    Publication date: April 25, 2013
    Inventors: Thuy B. Dao, Joel E. Keys, Hernan A. Rueda, Paul W. Sanders
  • Patent number: 8354325
    Abstract: A toroidal inductor formed in a semiconductor substrate. Through-silicon vias are used to connect metal layers formed on top and bottom surfaces of the semiconductor substrate. In one embodiment, the vias are elongated and laid out in two concentric circles, an inner circle enclosed by an outer circle. The vias of the outer concentric circle are longer than the vias of the inner circle so that spaces between vias are the same for both circles. In another embodiment, each elongated via may include a plurality of circular vias formed in a line. Metals layers on the top and bottom of the semiconductor substrate are patterned to form wedge shaped connectors between the inner and outer vias to form the spirals of the toroidal inductor. The wedge shaped connectors with elongated vias allow spacing between spirals to be constant.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: January 15, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Thuy B. Dao, Qiang Li, Melvy F. Miller
  • Publication number: 20130005109
    Abstract: A toroidal inductor formed in a semiconductor substrate. Through-silicon vias are used to connect metal layers formed on top and bottom surfaces of the semiconductor substrate. In one embodiment, the vias are elongated and laid out in two concentric circles, an inner circle enclosed by an outer circle. The vias of the outer concentric circle are longer than the vias of the inner circle so that spaces between vias are the same for both circles. In another embodiment, each elongated via may include a plurality of circular vias formed in a line. Metals layers on the top and bottom of the semiconductor substrate are patterned to form wedge shaped connectors between the inner and outer vias to form the spirals of the toroidal inductor. The wedge shaped connectors with elongated vias allow spacing between spirals to be constant.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 3, 2013
    Inventors: Thuy B. Dao, Qiang Li, Melvy F. Miller
  • Patent number: 8178950
    Abstract: A method for forming a through substrate via (TSV) comprises forming an opening within a substrate. An adhesion layer of titanium is formed within the via opening, a nucleation layer of titanium nitride is formed over the adhesion layer, and a tungsten layer is deposited over the nucleation layer, the tungsten layer having a thickness less than or equal to a critical film thickness sufficient to provide for film integrity and adhesion stability. A stress relief layer of titanium nitride is formed over the tungsten layer and a subsequent tungsten layer is deposited over the stress relief layer. The subsequent tungsten layer has a thickness less than or equal to the critical film thickness. The method further includes planarizing to expose the interlevel dielectric layer and a top of the TSV and backgrinding a bottom surface of the substrate sufficient to expose a bottom portion of the TSV.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: May 15, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Thuy B. Dao, Chanh M. Vuong
  • Publication number: 20120074583
    Abstract: A structure having a substrate includes an opening in the substrate having depth from a top surface of the substrate to a bottom surface of the substrate. A conductive material fills the opening. The opening has a length direction and a width direction and a first and second feature. The first feature and the second feature are spaced apart by a first length. The first feature has first width as a maximum width of the first feature, and the second feature has a second width as the maximum width of the second feature. The opening has a minimum width between the first feature and the second feature that is no more than one fifth the first length. The first width and the second width are each at least twice the minimum width.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 29, 2012
    Inventor: Thuy B. Dao
  • Publication number: 20120037969
    Abstract: Low Q associated with passive components of monolithic integrated circuits (ICs) when operated at microwave frequencies can be avoided or mitigated using high resistivity (e.g., ?100 Ohm-cm) semiconductor substrates (60) and lower resistance inductors (44?, 45?) for the IC (46). This eliminates significant in-substrate electromagnetic coupling losses from planar inductors (44, 45) and interconnections (50-1?, 52-1?, 94, 94?, 94?) overlying the substrate (60). The active transistor(s) (41?) are formed in the substrate (60) proximate the front face (63). Planar capacitors (42?, 43?) are also formed over the front face (63) of the substrate (60). Various terminals (42-1?, 42-2?, 43-1, 43-2?,50?, 51?, 52?, 42-1?, 42-2?, etc.) of the transistor(s) (41?), capacitor(s) (42?, 43?) and inductor(s) (44?, 45?) are coupled to a ground plane (69) on the rear face (62) of the substrate (60) using through-substrate-vias (98, 98?) to minimize parasitic resistance.
    Type: Application
    Filed: August 12, 2010
    Publication date: February 16, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Paul W. Sanders, Wayne R. Burger, Thuy B. Dao, Joel E. Keys, Michael F. Petras, Robert A. Pryor, Xiaowei Ren
  • Patent number: 8039386
    Abstract: A method of forming a through silicon via includes forming a via opening in a substrate using a hard mask, wherein a polymer is formed in the via opening. A first wet clean removes a first portion of the polymer and forms a first carbon containing oxide along portions of the sidewalls. A first ash process modifies the first carbon containing oxide and removes a second portion of the polymer. A first wet etch removes the modified first carbon containing oxide and a third portion of the polymer. A second ash process forms a second carbon containing oxide along at least a portion of the sidewalls. A second wet etch process removes the second carbon containing oxide and a fourth portions of the polymer. A third ash process forms a third carbon containing oxide along portions of the sidewalls and removes any remaining portions of the polymer.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: October 18, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Thuy B. Dao, Ross E. Noble, Dina H. Triyoso
  • Publication number: 20110237073
    Abstract: A method of forming a through silicon via includes forming a via opening in a substrate using a hard mask, wherein a polymer is formed in the via opening. A first wet clean removes a first portion of the polymer and forms a first carbon containing oxide along portions of the sidewalls. A first ash process modifies the first carbon containing oxide and removes a second portion of the polymer. A first wet etch removes the modified first carbon containing oxide and a third portion of the polymer. A second ash process forms a second carbon containing oxide along at least a portion of the sidewalls. A second wet etch process removes the second carbon containing oxide and a fourth portions of the polymer. A third ash process forms a third carbon containing oxide along portions of the sidewalls and removes any remaining portions of the polymer.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 29, 2011
    Inventors: Thuy B. Dao, Ross E. Noble, Dina H. Triyoso
  • Publication number: 20110215411
    Abstract: A method is provided for making a semiconductor device, which comprises (a) providing a semiconductor structure comprising a top gate (228) and a bottom gate (240); (b) creating first (251), second and third (252) openings in the semiconductor structure, wherein the first opening exposes a portion of the bottom gate; (c) filling the first, second and third openings with a conductive material, thereby forming source (258) and drain (260) regions in the second and third openings and a conductive region (253) in the first opening; and (d) forming an electrical contact (278) to the conductive region.
    Type: Application
    Filed: March 4, 2010
    Publication date: September 8, 2011
    Inventors: Jay P. John, Thuy B. Dao
  • Publication number: 20110151659
    Abstract: A method for forming a through substrate via (TSV) comprises forming an opening within a substrate. An adhesion layer of titanium is formed within the via opening, a nucleation layer of titanium nitride is formed over the adhesion layer, and a tungsten layer is deposited over the nucleation layer, the tungsten layer having a thickness less than or equal to a critical film thickness sufficient to provide for film integrity and adhesion stability. A stress relief layer of titanium nitride is formed over the tungsten layer and a subsequent tungsten layer is deposited over the stress relief layer. The subsequent tungsten layer has a thickness less than or equal to the critical film thickness. The method further includes planarizing to expose the interlevel dielectric layer and a top of the TSV and backgrinding a bottom surface of the substrate sufficient to expose a bottom portion of the TSV.
    Type: Application
    Filed: February 28, 2011
    Publication date: June 23, 2011
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: THUY B. DAO, CHANH M. VUONG
  • Patent number: 7964502
    Abstract: A method for forming a through substrate via (TSV) comprises forming an opening within a substrate. An adhesion layer of titanium is formed within the via opening, a nucleation layer of titanium nitride is formed over the adhesion layer, and a tungsten layer is deposited over the nucleation layer, the tungsten layer having a thickness less than or equal to a critical film thickness sufficient to provide for film integrity and adhesion stability. A stress relief layer of titanium nitride is formed over the tungsten layer and a subsequent tungsten layer is deposited over the stress relief layer. The subsequent tungsten layer has a thickness less than or equal to the critical film thickness. The method further includes planarizing to expose the interlevel dielectric layer and a top of the TSV and backgrinding a bottom surface of the substrate sufficient to expose a bottom portion of the TSV.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: June 21, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Thuy B. Dao, Chanh M. Vuong
  • Patent number: 7799657
    Abstract: A semiconductor fabrication process includes forming a sacrificial layer on a substrate of a donor wafer and implanting hydrogen ions into the substrate through the sacrificial layer to create a stress layer in the substrate. After forming the stress layer, multiple layer stacks are formed on the donor wafer substrate including a bottom gate conductor layer and a bottom gate dielectric layer. An upper surface of the donor wafer is bonded to an upper surface of a handle wafer. An oxide or low-k layer may be formed on the handle wafer. A portion of the substrate of the donor wafer is then cleaved. The bottom gate conductor layer is selected from the group including polysilicon, alpha silicon, alpha germanium, W, Ti, Ta, TiN, and TaSiN.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: September 21, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Thuy B. Dao