Patents by Inventor Tien-Hao Tang

Tien-Hao Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9640524
    Abstract: An ESD protection semiconductor device includes a substrate, a gate set formed on the substrate, a source region and a drain region formed in the substrate respectively at two sides of the gate set, at least a first doped region formed in the source region, and at least a second doped region formed in the drain region. The source region, the drain region and the second doped region include a first conductivity type, and the first doped region includes a second conductivity type. The first conductivity type and the second conductivity type are complementary to each other. The second doped region is electrically connected to the first doped region.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: May 2, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Yu Huang, Kuan-Cheng Su, Tien-Hao Tang, Ping-Jui Chen, Po-Ya Lai
  • Patent number: 9640527
    Abstract: An electrostatic discharge (ESD) protection device includes a first trigger element and a first silicon control rectifier (SCR) element. The first trigger element has a first parasitic bipolar junction transistor (BJT) formed in a substrate. The first SCR element has a second parasitic BJT formed in the substrate. The first parasitic BJT and the second parasitic BJT has a common parasitic bipolar base, and the first parasitic BJT has a trigger voltage substantially lower than that of the second parasitic BJT.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: May 2, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ya-Ting Lin, Yi-Chun Chen, Tien-Hao Tang
  • Publication number: 20170110446
    Abstract: An ESD protection semiconductor device includes a substrate, a gate set formed on the substrate, a source region and a drain region formed in the substrate respectively at two sides of the gate set, and at least a first doped region formed in the drain region. The source region and the drain region include a first conductivity type, and the first doped region includes a second conductivity type. The first conductivity type and the second conductivity type are complementary to each other. The first doped region is electrically connected to a ground potential.
    Type: Application
    Filed: November 12, 2015
    Publication date: April 20, 2017
    Inventors: Chung-Yu Huang, Kuan-Cheng Su, Tien-Hao Tang, Ping-Jui Chen, Po-Ya Lai
  • Patent number: 9627210
    Abstract: A method of fabricating an electrostatic discharge protection structure includes the following steps. Firstly, a semiconductor substrate is provided. Plural isolation structures, a well region, a first conductive region and a second conductive region are formed in the semiconductor substrate. The well region contains first type conducting carriers. The first conductive region and the second conductive region contain second type conducting carriers. Then, a mask layer is formed on the surface of the semiconductor substrate, wherein a part of the first conductive region is exposed. Then, a first implantation process is performed to implant the second type conducting carriers into the well region by using the mask layer as an implantation mask, so that a portion of the first type conducting carriers of the well region is electrically neutralized and a first doped region is formed under the exposed part of the first conductive region.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: April 18, 2017
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Chang-Tzu Wang, Yu-Chun Chen, Tien-Hao Tang
  • Patent number: 9613948
    Abstract: An ESD protection semiconductor device includes a substrate, a first isolation structure formed in the substrate, a gate disposed on the substrate, a source region formed in the substrate a first side of the gate, a first doped region formed in the substrate at a second side of the gate opposite to the first side, and a drain region formed in the first doped region. The gate overlaps a portion of the first isolation structure. The drain region is spaced apart from the first isolation by a portion of the first doped region. The substrate includes a first conductivity type, the source region, and the first doped region and the drain region include a second conductivity type. And the second conductivity type is complementary to the first conductivity type.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: April 4, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Jhih-Ming Wang, Li-Cih Wang, Tien-Hao Tang
  • Patent number: 9607977
    Abstract: An electrostatic discharge protection device includes an anode, a cathode, a negative voltage holding transistor and a positive voltage holding transistor. The anode is coupled to an input terminal, and the cathode is coupled to a ground. The negative voltage holding transistor includes an N-well. The positive voltage holding transistor includes an N-well. The N-well of the positive voltage holding transistor and the N-well of the negative voltage holding transistor are coupled together and are float. The negative voltage holding transistor and the positive voltage holding transistor are coupled between the anode and the cathode in a manner of back-to-back.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: March 28, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Li-Cih Wang, Mei-Ling Chao, Tien-Hao Tang, Kuan-Cheng Su
  • Patent number: 9607980
    Abstract: The present invention provides a high voltage transistor including a substrate, a first base region having a first conductivity type, and a first doped region, a second doped region, a second base region and a third doped region having a second conductivity type complementary to the first conductivity type. The first base region, the second doped region, the second base region and the third doped region are disposed in the substrate, and the first doped region is disposed in the substrate. The third doped region, the second base region and the second doped region are stacked sequentially, and the doping concentrations of the third doped region, the second base region and the second doped region gradually increase.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: March 28, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Jhih-Ming Wang, Li-Cih Wang, Tien-Hao Tang
  • Publication number: 20170084603
    Abstract: An ESD protection semiconductor device includes a substrate, a gate set formed on the substrate, a source region and a drain region formed in the substrate respectively at two sides of the gate set, at least a first doped region formed in the source region, and at least a second doped region formed in the drain region. The source region, the drain region and the second doped region include a first conductivity type, and the first doped region includes a second conductivity type. The first conductivity type and the second conductivity type are complementary to each other. The second doped region is electrically connected to the first doped region.
    Type: Application
    Filed: October 27, 2015
    Publication date: March 23, 2017
    Inventors: Chung-Yu Huang, Kuan-Cheng Su, Tien-Hao Tang, Ping-Jui Chen, Po-Ya Lai
  • Publication number: 20170084604
    Abstract: A layout structure is provided. The layout structure includes a substrate, a gate conductive layer, a first doped region having a first conductivity, a second doped region having the first conductivity, and a third doped region having a second conductivity. The gate conductive layer is formed on the substrate. The first doped region the second doped region are formed in the substrate and located at two sides of the gate conductive layer. The third doped region is formed in the substrate and adjacent to the second doped region. The third doped region and the second doped region form a diode. The gate conductive layer, the first doped region, and the third doped region are connected to ground, and the second doped region is connected to an input/output pad.
    Type: Application
    Filed: September 22, 2015
    Publication date: March 23, 2017
    Inventors: Pei-Shan Tseng, Yu-Cheng Liao, Ping-Chen Chang, Tien-Hao Tang, Kuan-Cheng Su
  • Publication number: 20170084602
    Abstract: An electrostatic discharge protection device includes an anode, a cathode, a negative voltage holding transistor and a positive voltage holding transistor. The anode is coupled to an input terminal, and the cathode is coupled to a ground. The negative voltage holding transistor includes an N-well. The positive voltage holding transistor includes an N-well. The N-well of the positive voltage holding transistor and the N-well of the negative voltage holding transistor are coupled together and are float. The negative voltage holding transistor and the positive voltage holding transistor are coupled between the anode and the cathode in a manner of back-to-back.
    Type: Application
    Filed: October 23, 2015
    Publication date: March 23, 2017
    Inventors: Li-Cih Wang, Mei-Ling Chao, Tien-Hao Tang, Kuan-Cheng Su
  • Patent number: 9564436
    Abstract: A semiconductor device is described, including a substrate including a first area and a second area, a first MOS element of a first conductivity type in the first area, and a second MOS element of the first conductivity type in the second area. The first area is closer to a pick-up region of the substrate than the second area. The substrate has a second conductivity type. The bottom depth of a first electrical conduction path in the substrate in the first area is smaller than that of a second electrical conduction path in the substrate in the second area.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: February 7, 2017
    Assignee: United Microelectronics Corp.
    Inventors: Yung-Ju Wen, Chang-Tzu Wang, Tien-Hao Tang, Kuan-Cheng Su
  • Patent number: 9559091
    Abstract: A method of manufacturing a fin diode structure includes providing a substrate, forming a doped well in said substrate, forming at least one doped region of first conductivity type or at least one doped region of second doped type in said doped well, performing an etching process to said doped region of first conductivity type or said doped region of second conductivity type to form a plurality of fins on said doped region of first conductivity type or on said doped region of second conductivity type, forming shallow trench isolations between said fins, and performing a doping process to said fins to form fins of first conductivity type and fins of second conductivity type.
    Type: Grant
    Filed: June 21, 2015
    Date of Patent: January 31, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chang-Tzu Wang, Ping-Chen Chang, Tien-Hao Tang, Kuan-Cheng Su
  • Publication number: 20160358904
    Abstract: An electrostatic discharge (ESD) protection device includes a first trigger element and a first silicon control rectifier (SCR) element. The first trigger element has a first parasitic bipolar junction transistor (BJT) formed in a substrate. The first SCR element has a second parasitic BJT formed in the substrate. The first parasitic BJT and the second parasitic BJT has a common parasitic bipolar base, and the first parasitic BJT has a trigger voltage substantially lower than that of the second parasitic BJT.
    Type: Application
    Filed: June 2, 2015
    Publication date: December 8, 2016
    Inventors: Ya-Ting Lin, Yi-Chun Chen, Tien-Hao Tang
  • Publication number: 20160351558
    Abstract: A fin type ESD protection device includes at least one first fin, at least one second fin, and at least one gate structure. The first fin is disposed on a semiconductor substrate, and a source contact contacts the first fin. The second fin is disposed on the semiconductor substrate, and a drain contact contacts the second fin. The first fin and the second fin extend in a first direction respectively, and the first fin is separated from the second fin. The gate structure is disposed between the source contact and the drain contact. The first fin is separated from the drain contact, and the second fin is separated from the source contact.
    Type: Application
    Filed: May 3, 2016
    Publication date: December 1, 2016
    Inventors: Yu-Chun Chen, Ping-Chen Chang, Tien-Hao Tang, Kuan-Cheng Su
  • Patent number: 9496251
    Abstract: The present invention provides electrostatic discharge protectors. One aspect of the present invention provides an electrostatic discharge protector includes a substrate, an electrostatic discharge protection circuit disposed on the substrate, and a pickup ring surrounding the electrostatic discharge protection circuit. The pickup ring has a plurality of low resistance zones where a doping layer, a contact and a metal layer are connected in sequence, and the low resistance zones are distributed within the pickup ring separately and unequally.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: November 15, 2016
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Lu-An Chen, Mei-Ling Chao, Tien-Hao Tang
  • Patent number: 9466598
    Abstract: A semiconductor structure suitable for ESD protection application is provided. The semiconductor structure includes a first well, a second well, a third well, a first fin, a second fin, an anode, a cathode and a first doping region. The first well and the second well are disposed in the third well. The first fin is disposed on the first well. The second fin is disposed on the second well. The anode is disposed on the first fin. The cathode is disposed on the second fin. The first doping region is disposed under the first fin, and separates the first fin from the first well. The first well, the second well, the first fin and the second fin have a first doping type. The third well and the first doping region have a second doping type.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: October 11, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Cheng Liao, Yu-Chun Chen, Ping-Chen Chang, Tien-Hao Tang
  • Publication number: 20160293593
    Abstract: A semiconductor structure comprises a well, a first lightly doped region, a second lightly doped region, a first heavily doped region, a second heavily doped region and a gate. The first lightly doped region is disposed in the well. The second lightly doped region is disposed in the well and separated from the first lightly doped region. The first heavily doped region is disposed in the first lightly doped region. The second heavily doped region is partially disposed in the second lightly doped region. The second heavily doped region has a surface contacting the well. The gate is disposed on the well between the first heavily doped region and the second heavily doped region. The well has a first doping type. The first lightly doped region, the second lightly doped region, the first heavily doped region and the second heavily doped region have a second doping type.
    Type: Application
    Filed: April 20, 2015
    Publication date: October 6, 2016
    Inventors: Mei-Ling Chao, Yi-Chun Chen, Li-Cih Wang, Tien-Hao Tang
  • Patent number: 9455246
    Abstract: A fin diode structure and method of manufacturing the same is provided in present invention, which the structure includes a substrate, a doped well formed in the substrate, a plurality of fins of first conductivity type and a plurality of fins of second conductivity type protruding from the doped well, and a doped region of first conductivity type formed globally in the substrate between the fins of first conductivity type, the fins of second conductivity type, the shallow trench isolation and the doped well and connecting with the fins of first doped type and the fins of second doped type.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: September 27, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chang-Tzu Wang, Ping-Chen Chang, Tien-Hao Tang, Kuan-Cheng Su
  • Patent number: 9449960
    Abstract: Provided is an electrostatic discharge (ESD) protection structure including a substrate, a pick-up region, a first MOS device, a second MOS device, a first doped region and a second doped region. The pick-up region is located in the substrate. The first MOS device has a first drain region of a first conductivity type located in the substrate. The second MOS device has a second drain region of the first conductivity type located in the substrate. The first drain region is closer to the pick up region than the second drain region is. The first doped region of a second conductivity type is located under the first doped region. The second doped region of the second conductivity type is located under the second doped region. The area and/or doping concentration of the first doped region is greater than that of the second doped region.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: September 20, 2016
    Assignee: United Microelectronics Corp.
    Inventors: Yung-Ju Wen, Chang-Tzu Wang, Tien-Hao Tang
  • Publication number: 20160268137
    Abstract: A method of fabricating an electrostatic discharge protection structure includes the following steps. Firstly, a semiconductor substrate is provided. Plural isolation structures, a well region, a first conductive region and a second conductive region are formed in the semiconductor substrate. The well region contains first type conducting carriers. The first conductive region and the second conductive region contain second type conducting carriers. Then, a mask layer is formed on the surface of the semiconductor substrate, wherein a part of the first conductive region is exposed. Then, a first implantation process is performed to implant the second type conducting carriers into the well region by using the mask layer as an implantation mask, so that a portion of the first type conducting carriers of the well region is electrically neutralized and a first doped region is formed under the exposed part of the first conductive region.
    Type: Application
    Filed: May 20, 2016
    Publication date: September 15, 2016
    Inventors: CHANG-TZU WANG, YU-CHUN CHEN, TIEN-HAO TANG