Patents by Inventor Timothy L. Wong

Timothy L. Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10545340
    Abstract: The present disclosure provides for an optical element useful in an optical device for illuminating the pupil of an eye, particularly for use with a head mountable display that can include eye-tracking. The optical device includes a light source and an optical element that transmits light, where light emitted from the light source is directed by the optical element toward the pupil of the eye, and attributes of the eye can then be detected by an optical sensor such as a camera. The light source can emit infrared light that is not visible to the human eye, so that world view images and/or combined digital images of the head-mountable display are not compromised.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: January 28, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Andrew J. Ouderkirk, Timothy L. Wong, Kandyce M. Bohannon, Gilles J. Benoit
  • Patent number: 10514553
    Abstract: A polarizing beam splitting system is described. The polarizing beam splitting system may include first and second prisms where the volume of the first prism is no greater than half the volume of the second prism. The first prism includes first and second surfaces and a light source may be disposed adjacent the first surface and an image forming device may be disposed adjacent the second surface. The first prism has a first hypotenuse and the second prism has a second hypotenuse. A reflective polarizer is disposed between the first and second hypotenuses.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: December 24, 2019
    Assignee: 3M INNOVATIvE PROPERTIES COMPANY
    Inventors: Andrew J. Ouderkirk, Zhisheng Yun, Erin A. McDowell, Timothy L. Wong, Kandyce M. Bohannon
  • Publication number: 20190384045
    Abstract: An optical system for displaying an image to a viewer includes a partial reflector, a reflective polarizer, and a first retarder layer. A light ray propagates along the optical axis and passes through the plurality of optical lenses, the partial reflector, the reflective polarizer, and the first retarder layer without being substantially refracted. For a cone of light incident on the optical system from an object comprising a spatial frequency of about 70, 60, 50, 40, or 30 line pairs per millimeter and filling the exit pupil with a chief ray of the cone of light passing through a center of the opening of the exit pupil of the optical system and making an angle of about 20 degrees with the optical axis, a modulation transfer function of the optical system is greater than about 0.2.
    Type: Application
    Filed: March 2, 2018
    Publication date: December 19, 2019
    Inventors: Zhisheng Yun, Timothy L. Wong, Erin A. McDowell
  • Patent number: 10444496
    Abstract: A multilayer reflective polarizer convex along orthogonal first and second axes orthogonal to an optical axis passing thorough an apex of the multilayer reflective polarizer is described. The multilayer reflective polarizer has at least one first location having a radial distance r1 from the optical axis and a displacement s1 from a plane perpendicular to the optical axis at the apex, where s1/r1 is in a range of about 0.2 to about 0.8. The multilayer reflective polarizer may have at least one inner layer substantially optically uniaxial at at least one first location away from the apex. For an area of the reflective polarizer defined by s1 and r1, a maximum variation of a transmission axis of the reflective polarizer may be less than about 2 degrees.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: October 15, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Gregg A. Ambur, Timothy L. Wong, Andrew J. Ouderkirk, Zhisheng Yun
  • Publication number: 20190285902
    Abstract: A display system including an imager for forming an image, and a projection lens system for projecting the image formed by the imager is described. For each pixel in the plurality of pixels, the imager is configured to emit a cone of light having a central ray having a direction that varies with location of the pixel in the imager. The variation may increase a brightness of an image projected through the projection lens system by at least 30 percent. The display system may include a light guide having a light insertion portion adapted to receive light; a light transport portion disposed to receive light from the light insertion portion; and a light extraction portion disposed to receive light from the light transport portion.
    Type: Application
    Filed: May 30, 2017
    Publication date: September 19, 2019
    Inventors: Andrew J. Ouderkirk, Timothy L. Wong, Erin A. McDowell, Zhisheng Yun, Gilles J. Benoit, Jo Anne Etter
  • Publication number: 20190271848
    Abstract: An image combiner, also referred to as a combiner optic, of a near-eye display system or the like transmits enough light so a user can see remote objects in a “world view”, while also reflecting enough light so the user can simultaneously see a projected image in a “projected” (augmented) view. The disclosed image combiners use two partial reflectors configured to form a wedged reflective cavity. In the display system, light from an imaging device follows a path to the user's eye that includes three reflections in the wedged cavity. By using this capability of the wedged cavity, the combiner optic can have a substantially reduced thickness, and lower profile, than a combiner optic that uses only one partial reflector and only one reflection in the optical path.
    Type: Application
    Filed: May 21, 2019
    Publication date: September 5, 2019
    Inventors: Andrew J. Ouderkirk, Erin A. McDowell, Timothy L. Wong
  • Publication number: 20190265465
    Abstract: Optical systems including a partial reflector, a reflective polarizer, and a retarder disposed between the partial reflector and the reflective polarizer are described. The reflective polarizer is curved about two orthogonal axes and includes at least one layer that is substantially optically uniaxial at at least one location. The optical system is adapted to provide an adjustable focus.
    Type: Application
    Filed: May 10, 2019
    Publication date: August 29, 2019
    Inventors: Timothy L. Wong, Andrew J. Ouderkirk, Zhisheng Yun, Erin A. McDowell, Gregg A. Ambur
  • Publication number: 20190265467
    Abstract: An optical stack includes first and second lenses, a partial reflector, a reflective polarizer, and a retarder. The reflective polarizer is curved about two orthogonal axes and includes at least one layer that is substantially optically uniaxial at at least one location. An optical system includes the optical stack disposed between an image surface and an exit surface. The optical system is configured such that substantially any chief ray transmitted from the image surface to the exit surface is first incident on the reflective polarizer at an angle of incidence less than 30 degrees.
    Type: Application
    Filed: May 13, 2019
    Publication date: August 29, 2019
    Inventors: Zhisheng Yun, Andrew J. Ouderkirk, Timothy L. Wong, Erin A. McDowell, Gregg A. Ambur
  • Publication number: 20190265466
    Abstract: An optical system and a magnifying device including the optical system are described. The optical system includes a reflective polarizer, a partial reflector, and a retarder disposed between the reflective polarizer and the partial reflector. The reflective polarizer is curved about two orthogonal axes and includes at least one layer that is substantially optically uniaxial at at least one location.
    Type: Application
    Filed: May 10, 2019
    Publication date: August 29, 2019
    Inventors: Zhisheng Yun, Andrew J. Ouderkirk, Timothy L. Wong, Erin A. McDowell, Gregg A. Ambur
  • Publication number: 20190235235
    Abstract: An optical system includes a reflective surface, a display adapted to emit image light toward the reflective surface, and a multilayer reflective polarizer disposed proximate the reflective surface. The multilayer reflective polarizer is curved about two orthogonal axes and includes at least one layer that is substantially optically uniaxial at at least one location. The image light is transmitted by the multilayer reflective polarizer after it is first reflected by the multilayer reflective polarizer. A head-mounted display includes a first optical system and a second optical system disposed proximate the first optical system.
    Type: Application
    Filed: April 9, 2019
    Publication date: August 1, 2019
    Inventors: Andrew J. Ouderkirk, Timothy L. Wong, Zhisheng Yun, Erin A. McDowell, Gregg A. Ambur
  • Patent number: 10345598
    Abstract: An image combiner, also referred to as a combiner optic, of a near-eye display system or the like transmits enough light so a user can see remote objects in a “world view”, while also reflecting enough light so the user can simultaneously see a projected image in a “projected” (augmented) view. The disclosed image combiners use two partial reflectors configured to form a wedged reflective cavity. In the display system, light from an imaging device follows a path to the user's eye that includes three reflections in the wedged cavity. By using this capability of the wedged cavity, the combiner optic can have a substantially reduced thickness, and lower profile, than a combiner optic that uses only one partial reflector and only one reflection in the optical path.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: July 9, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew J. Ouderkirk, Erin A. McDowell, Timothy L. Wong
  • Patent number: 10338380
    Abstract: Integral optical stacks and optical systems including the integral optical stack are described. The integral optical stack may include first and second lenses, a partial reflector, a reflective polarizer curved about two orthogonal axes, and a quarter wave retarder. The reflective polarizer is curved about two orthogonal axes and includes at least one layer that is substantially optically biaxial at at least one first location on the at least one layer away from an optical axis of the optical stack and substantially optically uniaxial at at least one second location away from the optical axis.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: July 2, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Zhisheng Yun, Andrew J. Ouderkirk, Timothy L. Wong, Erin A. McDowell, Gregg A. Ambur
  • Patent number: 10338393
    Abstract: An optical system and a magnifying device including the optical system are described. The optical system includes an exit pupil, a reflective polarizer proximate the exit pupil, a partial reflector disposed adjacent the reflective polarizer opposite the exit pupil, and a quarter wave retarder disposed between the reflective polarizer and the partial reflector. The reflective polarizer is curved about two orthogonal axes and the partial reflector is spaced apart from the reflective polarizer.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: July 2, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Zhisheng Yun, Andrew J. Ouderkirk, Timothy L. Wong, Erin A. McDowell, Gregg A. Ambur
  • Patent number: 10330930
    Abstract: Optical systems including a partial reflector, a reflective polarizer, and a quarter wave retarder disposed between the partial reflector and the reflective polarizer are described. The reflective polarizer is curved about two orthogonal axes and has at least one location having a radial distance r1 from an optical axis passing through an apex of the reflective polarizer and a displacement s1 from a plane perpendicular to the optical axis at an apex of the reflective polarizer, where s1/r1 is at least 0.1. The optical system is adapted to provide an adjustable dioptric correction.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: June 25, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Timothy L. Wong, Andrew J. Ouderkirk, Zhisheng Yun, Erin A. McDowell, Gregg A. Ambur
  • Patent number: 10302950
    Abstract: A head-mounted display including a first optical system is described. The first optical system includes a partial reflector and a multilayer reflective polarizer disposed adjacent to and spaced apart from the partial reflector. The multilayer reflective polarizer is curved about orthogonal first and second axes and includes at least one layer that is substantially optically uniaxial at at least one location. Each chief ray that passes through the first optical system is first incident on the multilayer reflective polarizer at an angle of incidence less than 30 degrees.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: May 28, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Andrew J. Ouderkirk, Timothy L. Wong, Zhisheng Yun, Erin A. McDowell, Gregg A. Ambur
  • Publication number: 20190125586
    Abstract: A welding protector (1) has a curved eye protection shield (10) with an electrically switchable light filter. The welding protector further has a magnifying cover (20) for arrangement on an eye facing inner side of the eye protection shield. The magnifying cover is pre-shaped based on a curve that extends equidistant to the curve the eye protection shield is based on. Further, the magnifying cover has two optical lenses (27) which in combination only partially cover the eye protection shield.
    Type: Application
    Filed: April 24, 2017
    Publication date: May 2, 2019
    Inventors: Kristina M. Magnusson, Britton G. Billinglsey, Christopher M. Brown, Timothy L. Wong, Kenneth Jarefors, John M. Kruse, Jon A. Kirschhoffer, John M. Pilgrim
  • Publication number: 20190018235
    Abstract: An optical system including at least a first lens, a partial reflector and a reflective polarizer is described. The optical system has an optical axis such that a light ray propagating along the optical axis passes through the first lens the partial reflector and the reflective polarizer without being substantially refracted. At least one major surface of the optical system is rotationally asymmetric about the optical axis. A major surface of the optical system may have a first portion defined by a first equation and a second portion adjacent the first portion defined by a different equation. The first lens may have a contoured edge adapted to be placed adjacent an eye of a viewer and substantially conform to the viewer's face.
    Type: Application
    Filed: September 2, 2016
    Publication date: January 17, 2019
    Inventors: Andrew J. Ouderkirk, Zhisheng Yun, Timothy L. Wong, Erin A. McDowell, Jo A. Etter, Robert M. Jennings
  • Publication number: 20190004327
    Abstract: A polarizing beam splitting system is described. The polarizing beam splitting system may include first and second prisms where the volume of the first prism is no greater than half the volume of the second prism. The first prism includes first and second surfaces and a light source may be disposed adjacent the first surface and an image forming device may be disposed adjacent the second surface. The first prism has a first hypotenuse and the second prism has a second hypotenuse. A reflective polarizer is disposed between the first and second hypotenuses.
    Type: Application
    Filed: June 22, 2016
    Publication date: January 3, 2019
    Inventors: Andrew J. Ouderkirk, Zhisheng Yun, Erin A. McDowell, Timothy L. Wong, Kandyce M. Bohannon
  • Publication number: 20180356640
    Abstract: Optical systems including an image surface and an exit surface are described. First second and third optical lenses, a partial reflector, a multilayer reflective polarizer and a retarder are disposed between the image surface and the exit surface. At least one location on at least one layer of the multilayer reflective polarizer is substantially uniaxially oriented. Each chief light ray that passes from the image surface to the exit surface is incident on the multilayer reflective polarizer with an angle of incidence less than about 30 degrees. The optical system may include a plurality of major surfaces disposed between the image surface and the exit surface where each major surface is convex toward the image surface and where at least six different major surfaces have six different convexities.
    Type: Application
    Filed: August 22, 2018
    Publication date: December 13, 2018
    Inventors: Zhisheng Yun, Andrew J. Ouderkirk, Timothy L. Wong, Erin A. McDowell, Gregg A. Ambur
  • Publication number: 20180275460
    Abstract: Multi-mode displays are described. In particular, multi-mode displays having an emissive display element, a partial reflector disposed on the emissive display element, a spatial light modulator disposed on the partial reflector, and an absorbing polarizer disposed on the spatial light modulator are described. Multi-mode displays having at least reflective display modes and emissive display modes are described. The display is configured such that switching between these modes happens quickly or even automatically.
    Type: Application
    Filed: October 3, 2016
    Publication date: September 27, 2018
    Inventors: Andrew J. Ouderkirk, Timothy L. Wong, Erin A. McDowell