Patents by Inventor Todd Parrish St. Clair

Todd Parrish St. Clair has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9255036
    Abstract: A method and apparatus to treat a dried unfired article comprising a ceramic precursor composition substantially held together by a binder, to be resistant to binder soluble solvent based processing. The method includes depositing a fluid on the article surface, and polymerizing the deposited fluid to form a polymer thin layer on the surface. The fluid may be an aerosol, a vapor, a fog, a mist, a smoke, or combinations thereof. An apparatus to perform the method and an article resistant to binder soluble solvent based processing are also provided. The article can be an unfired honeycomb body that includes a dried composition of ceramic precursor substantially held together by a binder and a layer disposed on a surface of the unfired honeycomb body. The surface to be exposed in the green state to a binder soluble solvent and the layer protects the binder from solubilization by the solvent.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 9, 2016
    Assignee: Corning Incorporated
    Inventors: Kenneth Joseph Drury, Paul John Shustack, Todd Parrish St. Clair
  • Patent number: 9205362
    Abstract: A method of manufacturing a particulate filter includes plugging at least some of the channels of a green cellular ceramic body on a first end with a green plugging material that includes a liquid vehicle to form a partially plugged green cellular ceramic body, firing the partially plugged green cellular ceramic body to form a partially plugged ceramic article, and plugging at least some of the channels on a second end of the partially plugged ceramic article with a plugging material that sets at a temperature of less than 1000° C.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: December 8, 2015
    Assignee: Corning Incorporated
    Inventors: Thorsten Rolf Boger, Todd Parrish St Clair, Patrick David Tepesch, Brian Paul Usiak
  • Patent number: 9076567
    Abstract: Doped and partially-reduced oxide (e.g., SrTiO3-based) thermoelectric materials. The thermoelectric materials can be single-doped or multi-doped (e.g., co-doped) and display a thermoelectric figure of merit (ZT) of 0.2 or higher at 1050K. Methods of forming the thermoelectric materials involve combining and reacting suitable raw materials and heating them in a graphite environment to at least partially reduce the resulting oxide. Optionally, a reducing agent such as titanium carbide, titanium nitride, or titanium boride can be incorporated into the starting materials prior to the reducing step in graphite. The reaction product can be sintered to form a dense thermoelectric material.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: July 7, 2015
    Assignee: CORNING INCORPORATED
    Inventors: Monika Backhaus-Ricoult, Lisa Anne Moore, Charlene Marie Smith, Todd Parrish St. Clair
  • Publication number: 20140327186
    Abstract: Systems and methods for rapid drying of ceramic greenwares having a high graphite content are disclosed. The methods include employing microwave drying to bring the dryness of the ceramic greenware to a first select dryness and then employing close-coupled hot-air drying to bring the dryness to the final target dryness. The judicious use of close-coupled hot-air drying reduces end defects due to unevenness in the microwave drying process while also substantially speeding up the drying process. Various configurations for and combinations of microwave drying and close-coupled hot-air drying are disclosed.
    Type: Application
    Filed: March 31, 2014
    Publication date: November 6, 2014
    Applicant: Corning Incorporated
    Inventors: Willard Ashton Cutler, James Anthony Feldman, Jacob George, Amit Halder, Nadezhda Pavlovna Paramonova, Todd Parrish St Clair
  • Publication number: 20140272276
    Abstract: A method and apparatus to treat a dried unfired article comprising a ceramic precursor composition substantially held together by a binder, to be resistant to binder soluble solvent based processing. The method includes depositing a fluid on the article surface, and polymerizing the deposited fluid to form a polymer thin layer on the surface. The fluid may be an aerosol, a vapor, a fog, a mist, a smoke, or combinations thereof. An apparatus to perform the method and an article resistant to binder soluble solvent based processing are also provided. The article can be an unfired honeycomb body that includes a dried composition of ceramic precursor substantially held together by a binder and a layer disposed on a surface of the unfired honeycomb body. The surface to be exposed in the green state to a binder soluble solvent and the layer protects the binder from solubilization by the solvent.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Kenneth Joseph Drury, Paul John Shustack, Todd Parrish St. Clair
  • Publication number: 20140225022
    Abstract: Doped and partially-reduced oxide (e.g., SrTiO3-based) thermoelectric materials. The thermoelectric materials can be single-doped or multi-doped (e.g., co-doped) and display a thermoelectric figure of merit (ZT) of 0.2 or higher at 1050K. Methods of forming the thermoelectric materials involve combining and reacting suitable raw materials and heating them in a graphite environment to at least partially reduce the resulting oxide. Optionally, a reducing agent such as lanthanum boride, titanium carbide, titanium nitride, or titanium boride can be incorporated into the starting materials prior to the reducing step in graphite. The reaction product can be sintered to form a dense thermoelectric material.
    Type: Application
    Filed: April 14, 2014
    Publication date: August 14, 2014
    Applicant: Corning Incorporated
    Inventors: Monika Backhaus-Ricoult, Lisa Anne Moore, Charlene Marie Smith, Todd Parrish St Clair
  • Patent number: 8778045
    Abstract: Cellular ceramic articles are manufactured from a green cellular ceramic body that includes a binder material and a plurality of channels. At least one of the channels is coated with a slurry that includes a green coating composition and a solvent to form a coating layer. The binder material is insoluble in the solvent.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: July 15, 2014
    Assignee: Corning Incorporated
    Inventors: Thorsten Rolf Boger, Willard Ashton Cutler, Kenneth Joseph Drury, Todd Parrish St Clair, Patrick David Tepesch, John Forrest Wight, Jr.
  • Patent number: 8628680
    Abstract: Doped and partially-reduced oxide (e.g., SrTiO3-based) thermoelectric materials. The thermoelectric materials can be single-doped or multi-doped (e.g., co-doped) and display a thermoelectric figure of merit (ZT) of 0.2 or higher at 1050K. Methods of forming the thermoelectric materials involve combining and reacting suitable raw materials and heating them in a graphite environment to at least partially reduce the resulting oxide. Optionally, a reducing agent such as titanium carbide can be incorporated into the starting materials prior to the reducing step in graphite. The reaction product can be sintered to form a dense thermoelectric material.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: January 14, 2014
    Assignee: Corning Incorporated
    Inventors: Monika Backhaus-Ricoult, Charlene Marie Smith, Todd Parrish St Clair
  • Publication number: 20130256958
    Abstract: Cellular ceramic articles are manufactured from a green cellular ceramic body that includes a binder material and a plurality of channels. At least one of the channels is coated with a slurry that includes a green coating composition and a solvent to form a coating layer. The binder material is insoluble in the solvent.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 3, 2013
    Inventors: Thorsten Rolf Boger, Willard Ashton Cutler, Kenneth Joseph Drury, Todd Parrish St Clair, Patrick David Tepesch, John Forrest Wight, JR.
  • Publication number: 20130240801
    Abstract: Doped and partially-reduced oxide (e.g., SrTiO3-based) thermoelectric materials. The thermoelectric materials can be single-doped or multi-doped (e.g., co-doped) and display a thermoelectric figure of merit (ZT) of 0.2 or higher at 1050K. Methods of forming the thermoelectric materials involve combining and reacting suitable raw materials and heating them in a graphite environment to at least partially reduce the resulting oxide. Optionally, a reducing agent such as titanium carbide, titanium nitride, or titanium boride can be incorporated into the starting materials prior to the reducing step in graphite. The reaction product can be sintered to form a dense thermoelectric material.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 19, 2013
    Applicant: CORNING INCORPORATED
    Inventors: MONIKA BACKHAUS-RICOULT, LISA ANNE MOORE, CHARLENE MARIE SMITH, TODD PARRISH ST. CLAIR
  • Patent number: 8475557
    Abstract: Cellular ceramic articles are manufactured from a green cellular ceramic body that includes a binder material and a plurality of channels. At least one of the channels is coated with a slurry that includes a green coating composition and a solvent to form a coating layer. The binder material is insoluble in the solvent.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: July 2, 2013
    Assignee: Corning Incorporated
    Inventors: Thorsten Rolf Boger, Willard Ashton Cutler, Kenneth Joseph Drury, Todd Parrish St Clair, Patrick David Tepesch, John Forrest Wight, Jr.
  • Publication number: 20130106031
    Abstract: A method of manufacturing a particulate filter includes plugging at least some of the channels of a green cellular ceramic body on a first end with a green plugging material that includes a liquid vehicle to form a partially plugged green cellular ceramic body, firing the partially plugged green cellular ceramic body to form a partially plugged ceramic article, and plugging at least some of the channels on a second end of the partially plugged ceramic article with a plugging material that sets at a temperature of less than 1000° C.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Inventors: Thorsten Rolf Boger, Todd Parrish St Clair, Patrick David Tepesch, Brian Paul Usiak
  • Publication number: 20130026427
    Abstract: Doped and partially-reduced oxide (e.g., SrTiO3-based) thermoelectric materials. The thermoelectric materials can be single-doped or multi-doped (e.g., co-doped) and display a thermoelectric figure of merit (ZT) of 0.2 or higher at 1050K. Methods of forming the thermoelectric materials involve combining and reacting suitable raw materials and heating them in a graphite environment to at least partially reduce the resulting oxide. Optionally, a reducing agent such as titanium carbide can be incorporated into the starting materials prior to the reducing step in graphite. The reaction product can be sintered to form a dense thermoelectric material.
    Type: Application
    Filed: July 28, 2011
    Publication date: January 31, 2013
    Inventors: Monika Backhaus-Ricoult, Charlene Marie Smith, Todd Parrish St. Clair
  • Publication number: 20120107558
    Abstract: A substrate having a durable hydrophobic and/or oleophobic surface. The durable hydrophobic and/or oleophobic surface includes a first layer that is disposed on the substrate and comprises inorganic nanoparticles, an outer layer comprising a fluorosilane, and an optional immobilizing layer that comprises at least one of an inorganic oxide and a silsesquioxane. The durable surface is capable of retaining optical properties, such as haze, and hydrophobic and/or oleophobic properties after repeated contact with foreign objects such as, for example, wiping with a cloth or human finger.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 3, 2012
    Inventors: Shari Elizabeth Koval, Jia Liu, Prantik Mazumder, Charlotte Diane Milia, Mark Alejandro Quesada, Wageesha Senaratne, Todd Parrish St. Clair
  • Publication number: 20120047860
    Abstract: Cellular ceramic articles are manufactured from a green cellular ceramic body that includes a binder material and a plurality of channels. At least one of the channels is coated with a slurry that includes a green coating composition and a solvent to form a coating layer. The binder material is insoluble in the solvent.
    Type: Application
    Filed: August 26, 2011
    Publication date: March 1, 2012
    Inventors: Thorsten Rolf Boger, Willard Ashton Cutler, Kenneth Joseph Drury, Todd Parrish St Clair, Patrick David Tepesch, John Forrest Wight, JR.
  • Publication number: 20100285275
    Abstract: A glass substrate having at least one surface with engineered properties that include hydrophobicity, oleophobicity, anti-stick or adherence of particulate or liquid matter, resistance to fingerprinting, durability, and transparency (i.e., haze<10%). The surface comprises at least one set of topological features that together have a re-entrant geometry that prevents a decrease in contact angle and pinning of drops comprising at least one of water and sebaceous oils.
    Type: Application
    Filed: April 20, 2010
    Publication date: November 11, 2010
    Inventors: Adra Smith Baca, Karl William Koch, III, Shari Elizabeth Koval, Prantik Mazumder, Mark Alejandro Quesada, Wageesha Senaratne, Todd Parrish St. Clair
  • Publication number: 20100279068
    Abstract: A process for creating hydrophobic and oleophobic glass surfaces. The process consists of heating a glass article to temperatures near the glass softening point and pressing a textured mold into the glass article to create surface texture. The mold texture is selected to have dimensions that convey hydrophobicity and oleophobicity to the glass article when combined with appropriate surface chemistry. The surface features are controlled through choice of mold texture and through process parameters including applied pressure, temperature, and pressing time. Articles made by this process are also described.
    Type: Application
    Filed: November 24, 2009
    Publication date: November 4, 2010
    Inventors: Glen Bennett Cook, Wageesha Senaratne, Todd Parrish St. Clair
  • Publication number: 20100190051
    Abstract: A thin film battery comprises a substrate, anode and cathode current collector layers formed over the substrate, anode and cathode layers formed over and in electrical contact with respective ones of the current collector layers, and an electrolyte layer formed between the anode and cathode layers. The thin film battery further comprises a barrier layer formed from a material such as tin oxide, tin phosphate, tin fluorophosphate, chalcogenide glass, tellurite glass or borate glass. The barrier layer is configured to encapsulate the thin film battery layers and substantially inhibit or prevent exposure of the thin film battery layers to air or moisture.
    Type: Application
    Filed: January 29, 2009
    Publication date: July 29, 2010
    Inventors: Bruce Gardiner Aitken, Todd Parrish St. Clair, James R. Lim, Prantik Mazumder, Mark Alejandro Quesada