Patents by Inventor Tomohiro Kubo

Tomohiro Kubo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150194527
    Abstract: A semiconductor device has: a silicon (semiconductor) substrate; a gate insulating film and a gate electrode, which are formed on the silicon substrate in this order; and source/drain material layers formed in recesses (holes) in the silicon substrate, the recesses being located beside the gate electrode. Here, each of side surfaces of the recesses, which are closer to the gate electrode, is constituted of at least one crystal plane of the silicon substrate.
    Type: Application
    Filed: March 23, 2015
    Publication date: July 9, 2015
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Hidenobu Fukutome, Tomohiro Kubo
  • Patent number: 9062760
    Abstract: A method comprises a pre-charge step of pre-charging operating oil; a holding step of holding an operating pressure at an oil pressure less than an oil pressure during the pre-charge, for a given period of time; and a raising step of raising the operating pressure to cause an engagement-side friction element to be engaged. The method further comprises a setting step of setting a pre-charge period in the pre-charge step. The setting step includes predicting a timing at which the engagement-side friction element is to be engaged; actually measuring a timing at which the engagement-side friction element has been actually engaged; and setting the period of the pre-charge step to allow a difference between the timings to become smaller.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: June 23, 2015
    Assignee: Mazda Motor Corporation
    Inventors: Shinya Kamada, Yosuke Takaie, Tomohiro Kubo
  • Publication number: 20150068456
    Abstract: [Object] To provide techniques such as a mask adjustment unit capable of appropriately adjusting the position of a mask pattern. [Solving Means] A mask adjustment unit according to the present technology includes a base body, a movable member, and an adjustment mechanism. The movable member supports a side of an outer edge portion of a mask main body and is movably provided on the base body, the mask main body having the outer edge portion. The adjustment mechanism applies, to the mask body via the movable member, both pulling tension force from the outer edge portion of the mask main body to outside of the mask main body and pressing force pressing from the outer edge portion to inside of the mask main body, the mask body being supported by the movable member.
    Type: Application
    Filed: January 31, 2013
    Publication date: March 12, 2015
    Applicant: Sony Corporation
    Inventors: Kentaro Kuriyama, Tomohiro Kubo
  • Publication number: 20150050767
    Abstract: An evaporation mask includes: a mask body including a pattern region configured of a plurality of passage holes; and an adjusting frame configured to hold the mask body and having a mechanism capable of adjusting positions of the passage holes on the mask body. The adjusting frame has a frame-like base material, and a movable member that is provided along one or more sides of the base material to be bonded with an outer edge of the mask body, and at least a part of which is deformable on the base material. One or a plurality of slits are provided at a selective region of the movable member.
    Type: Application
    Filed: August 7, 2014
    Publication date: February 19, 2015
    Applicant: Sony Corporation
    Inventors: Kentaro Kuriyama, Hiroichi Ishikawa, Tomohiro Kubo
  • Publication number: 20140033845
    Abstract: A method comprises a pre-charge step of pre-charging operating oil; a holding step of holding an operating pressure at an oil pressure less than an oil pressure during the pre-charge, for a given period of time; and a raising step of raising the operating pressure to cause an engagement-side friction element to be engaged. The method further comprises a setting step of setting a pre-charge period in the pre-charge step. The setting step includes predicting a timing at which the engagement-side friction element is to be engaged; actually measuring a timing at which the engagement-side friction element has been actually engaged; and setting the period of the pre-charge step to allow a difference between the timings to become smaller.
    Type: Application
    Filed: April 18, 2012
    Publication date: February 6, 2014
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Shinya Kamada, Yosuke Takaie, Tomohiro Kubo
  • Patent number: 8457479
    Abstract: A rapid thermal processing apparatus comprises a processing chamber which subjects a semiconductor substrate to rapid thermal processing. A substrate support part is arranged in the processing chamber and supports the substrate. A lamp part optically irradiates the substrate supported by the substrate support part and heats the substrate. A thermo sensor is provided to measure a temperature of the substrate. A temperature computing part computes the temperature of the substrate based on an output signal of the thermo sensor. A control part controls an irradiation intensity of the lamp part according to the temperature computed by the temperature computing part. In this apparatus, the control part is provided to correct a control parameter of the irradiation intensity of the lamp part based on a measured reflectivity of a surface of the substrate.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: June 4, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Tomohiro Kubo
  • Patent number: 8304261
    Abstract: A thermal treatment apparatus having a first light source emitting a first light having light diffusion property, a reflectance measuring unit irradiating a treatment target with the light from plural directions by the first light source and determining a light reflectance of the treatment target, a light irradiation controller adjusting an intensity of a second light of a second light source on the basis of the light reflectance, the second light has diffusion property, and a thermal treatment unit irradiating the treatment target with the second light having adjusted the intensity of the second light by the light irradiation controller.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 6, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Tomohiro Kubo
  • Patent number: 7989299
    Abstract: A semiconductor device has: a silicon (semiconductor) substrate; a gate insulating film and a gate electrode, which are formed on the silicon substrate in this order; and source/drain material layers formed in recesses (holes) in the silicon substrate, the recesses being located beside the gate electrode. Here, each of side surfaces of the recesses, which are closer to the gate electrode, is constituted of at least one crystal plane of the silicon substrate.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: August 2, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Hidenobu Fukutome, Tomohiro Kubo
  • Publication number: 20110165703
    Abstract: A thermal treatment apparatus having a first light source emitting a first light having light diffusion property, a reflectance measuring unit irradiating a treatment target with the light from plural directions by the first light source and determining a light reflectance of the treatment target, a light irradiation controller adjusting an intensity of a second light of a second light source on the basis of the light reflectance, the second light has diffusion property, and a thermal treatment unit irradiating the treatment target with the second light having adjusted the intensity of the second light by the light irradiation controller.
    Type: Application
    Filed: March 15, 2011
    Publication date: July 7, 2011
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Tomohiro KUBO
  • Patent number: 7927892
    Abstract: A thermal treatment apparatus having a first light source emitting a first light having light diffusion property, a reflectance measuring unit irradiating a treatment target with the light from plural directions by the first light source and determining a light reflectance of the treatment target, a light irradiation controller adjusting an intensity of a second light of a second light source on the basis of the light reflectance, the second light has diffusion property, and a thermal treatment unit irradiating the treatment target with the second light having adjusted the intensity of the second light by the light irradiation controller.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: April 19, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Tomohiro Kubo
  • Publication number: 20110019982
    Abstract: A rapid thermal processing apparatus comprises a processing chamber which subjects a semiconductor substrate to rapid thermal processing. A substrate support part is arranged in the processing chamber and supports the substrate. A lamp part optically irradiates the substrate supported by the substrate support part and heats the substrate. A thermo sensor is provided to measure a temperature of the substrate. A temperature computing part computes the temperature of the substrate based on an output signal of the thermo sensor. A control part controls an irradiation intensity of the lamp part according to the temperature computed by the temperature computing part. In this apparatus, the control part is provided to correct a control parameter of the irradiation intensity of the lamp part based on a measured reflectivity of a surface of the substrate.
    Type: Application
    Filed: September 29, 2010
    Publication date: January 27, 2011
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Tomohiro Kubo
  • Publication number: 20100311218
    Abstract: A semiconductor device has: a silicon (semiconductor) substrate; a gate insulating film and a gate electrode, which are formed on the silicon substrate in this order; and source/drain material layers formed in recesses (holes) in the silicon substrate, the recesses being located beside the gate electrode. Here, each of side surfaces of the recesses, which are closer to the gate electrode, is constituted of at least one crystal plane of the silicon substrate.
    Type: Application
    Filed: August 19, 2010
    Publication date: December 9, 2010
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Hidenobu Fukutome, Tomohiro Kubo
  • Patent number: 7844171
    Abstract: A rapid thermal processing apparatus comprises a processing chamber which subjects a semiconductor substrate to rapid thermal processing. A substrate support part is arranged in the processing chamber and supports the substrate. A lamp part optically irradiates the substrate supported by the substrate support part and heats the substrate. A thermo sensor is provided to measure a temperature of the substrate. A temperature computing part computes the temperature of the substrate based on an output signal of the thermo sensor. A control part controls an irradiation intensity of the lamp part according to the temperature computed by the temperature computing part. In this apparatus, the control part is provided to correct a control parameter of the irradiation intensity of the lamp part based on a measured reflectivity of a surface of the substrate.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: November 30, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Tomohiro Kubo
  • Patent number: 7645665
    Abstract: A method for manufacturing a semiconductor device has the steps of: (a) implanting boron (B) ions into a semiconductor substrate; (b) implanting fluorine (F) or nitrogen (N) ions into the semiconductor device; (c) after the steps (a) and (b) are performed, executing first annealing with a heating time of 100 msec or shorter relative to a region of the semiconductor substrate into which ions were implanted; and (d) after the step (c) is performed, executing second annealing with a heating time longer than the heating time of the first annealing, relative to the region of the semiconductor substrate into which ions were implanted. The method for manufacturing a semiconductor device is provided which can dope boron (B) shallowly and at a high concentration.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: January 12, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Tomohiro Kubo, Kenichi Okabe, Tomonari Yamamoto
  • Patent number: 7598162
    Abstract: It is an object to provide a method of manufacturing a semiconductor device capable of forming a MOS transistor of high performance, comprising the steps of forming a gate electrode on a semiconductor substrate via a gate-insulating film (step S1), introducing a impurity into the semiconductor substrate using the gate electrode as a mask (step S7), introducing a diffusion-controlling substance into the semiconductor substrate to control the diffusion of the impurity (step S8), forming a side wall-insulating film on each side surface of the gate electrode (step S9), deeply introducing impurity into the semiconductor substrate using the gate electrode and the side wall-insulating film as masks (step S10), activating the impurity by the annealing treatment using a rapid thermal annealing method (step S11), and further activating the impurity by the millisecond annealing treatment (step S12).
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: October 6, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Tomonari Yamamoto, Tomohiro Kubo
  • Publication number: 20090093071
    Abstract: A thermal treatment apparatus having a first light source emitting a first light having light diffusion property, a reflectance measuring unit irradiating a treatment target with the light from plural directions by the first light source and determining a light reflectance of the treatment target, a light irradiation controller adjusting an intensity of a second light of a second light source on the basis of the light reflectance, the second light has diffusion property, and a thermal treatment unit irradiating the treatment target with the second light having adjusted the intensity of the second light by the light irradiation controller.
    Type: Application
    Filed: October 6, 2008
    Publication date: April 9, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Tomohiro KUBO
  • Publication number: 20080142839
    Abstract: A semiconductor device has: a silicon (semiconductor) substrate; a gate insulating film and a gate electrode, which are formed on the silicon substrate in this order; and source/drain material layers formed in recesses (holes) in the silicon substrate, the recesses being located beside the gate electrode. Here, each of side surfaces of the recesses, which are closer to the gate electrode, is constituted of at least one crystal plane of the silicon substrate.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 19, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Hidenobu Fukutome, Tomohiro Kubo
  • Publication number: 20080019679
    Abstract: A rapid thermal processing apparatus comprises a processing chamber which subjects a semiconductor substrate to rapid thermal processing. A substrate support part is arranged in the processing chamber and supports the substrate. A lamp part optically irradiates the substrate supported by the substrate support part and heats the substrate. A thermo sensor is provided to measure a temperature of the substrate. A temperature computing part computes the temperature of the substrate based on an output signal of the thermo sensor. A control part controls an irradiation intensity of the lamp part according to the temperature computed by the temperature computing part. In this apparatus, the control part is provided to correct a control parameter of the irradiation intensity of the lamp part based on a measured reflectivity of a surface of the substrate.
    Type: Application
    Filed: September 10, 2007
    Publication date: January 24, 2008
    Applicant: FUJITSU LIMITED
    Inventor: Tomohiro Kubo
  • Patent number: 7283734
    Abstract: A rapid thermal processing apparatus comprises a processing chamber which subjects a semiconductor substrate to rapid thermal processing. A substrate support part is arranged in the processing chamber and supports the substrate. A lamp part optically irradiates the substrate supported by the substrate support part and heats the substrate. A thermo sensor is provided to measure a temperature of the substrate. A temperature computing part computes the temperature of the substrate based on an output signal of the thermo sensor. A control part controls an irradiation intensity of the lamp part according to the temperature computed by the temperature computing part. In this apparatus, the control part is provided to correct a control parameter of the irradiation intensity of the lamp part based on a measured reflectivity of a surface of the substrate.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: October 16, 2007
    Assignee: Fujitsu Limited
    Inventor: Tomohiro Kubo
  • Publication number: 20070232039
    Abstract: A method for manufacturing a semiconductor device has the steps of: (a) implanting boron (B) ions into a semiconductor substrate; (b) implanting fluorine (F) or nitrogen (N) ions into the semiconductor device; (c) after the steps (a) and (b) are performed, executing first annealing with a heating time of 100 msec or shorter relative to a region of the semiconductor substrate into which ions were implanted; and (d) after the step (c) is performed, executing second annealing with a heating time longer than the heating time of the first annealing, relative to the region of the semiconductor substrate into which ions were implanted. The method for manufacturing a semiconductor device is provided which can dope boron (B) shallowly and at a high concentration.
    Type: Application
    Filed: December 4, 2006
    Publication date: October 4, 2007
    Applicant: FUJITSU LIMITED
    Inventors: Tomohiro Kubo, Kenichi Okabe, Tomonari Yamamoto