Patents by Inventor Toshiyuki Kawashima

Toshiyuki Kawashima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10206272
    Abstract: The present invention relates to a method for manufacturing a tracer-encapsulated solid pellet for magnetic-confinement fusion, the method comprising a liquid droplet formation step of discharging an organic liquid containing an organic solvent into a stabilizing liquid to thereby form liquid droplets 12, and an organic solvent removal step of removing the organic solvent from the liquid droplets 12A. The organic liquid to be used is a liquid having a first organic polymer containing tracer atoms and a second organic polymer being an organic polymer different from the first organic polymer dissolved in the organic solvent, wherein the first organic polymer and the second organic polymer can be mutually phase-separated.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: February 12, 2019
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Nakahiro Satoh, Ryo Yoshimura, Masaru Takagi, Toshiyuki Kawashima, Hirofumi Kan
  • Publication number: 20190002931
    Abstract: The production method of the present invention includes: a first fermentation step of adding at least one microorganism selected from yeast, Escherichia coli, and bacteria of the genus Corynebacterium to a first concentrated sugar solution to ferment the first concentrated sugar solution and subjecting the resulting first fermented solution to solid-liquid separation, the first concentrated sugar solution being obtained by using a nanofiltration membrane and/or a reverse osmosis membrane to concentrate a sugar solution obtained using a herbaceous plant of the family Gramineae or Cucurbitaceae as a raw material; and a second fermentation step of adding a second concentrated sugar solution to a solid component obtained in the first fermentation step to ferment the second concentrated sugar solution with the microorganism used in the first fermentation step, and subjecting the resulting second fermented solution to solid-liquid separation.
    Type: Application
    Filed: August 10, 2016
    Publication date: January 3, 2019
    Applicants: NITTO DENKO CORPORATION, NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY
    Inventors: Kengo SASAKI, Chiaki OGINO, Akihiko KONDO, Toshiyuki KAWASHIMA, Masahiko HIROSE, Takahisa KONISHI
  • Patent number: 10134492
    Abstract: The device has a target supply unit 4a for supplying a target 2a to a chamber 3a, a target monitor 5a for monitoring the target 2a present inside the chamber 3a, a laser light irradiator 6a for irradiating the target 2a present inside the chamber 3a, with laser light 8a, and a controller 7a. The target supply unit 4a emits the target 2a at a timing for emitting, that is controlled by the controller 7a, into a preset emission direction 3d inside the chamber 3a, and the controller 7a calculates an irradiation point 4d with the laser light 8a, calculates a timing for arriving of the target 2a at the irradiation point 4d, and makes the laser light irradiator 6a irradiate the target with the laser light, based on the irradiation point 4d and the timing for arriving.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: November 20, 2018
    Assignees: HAMAMATSU PHOTONICS K.K., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Sekine, Toshiyuki Kawashima, Nakahiro Satoh, Yoneyoshi Kitagawa, Yoshitaka Mori, Katsuhiro Ishii, Ryohei Hanayama, Osamu Komeda, Yasuhiko Nishimura, Mitsutaka Kakeno
  • Patent number: 10133079
    Abstract: Provided is a laser device including N semiconductor laser array stacks, a prismatic optical system that shifts optical axes of luminous fluxes respectively output from the N semiconductor laser array stacks so as to decrease intervals among the luminous fluxes, and an imaging optical system that causes the luminous fluxes to be condensed and deflected for each luminous flux. The imaging optical system causes the luminous fluxes to be deflected so that the luminous fluxes overlap each other at a predetermined position and generates a light-condensing point of the luminous fluxes between the imaging optical system and the predetermined position.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: November 20, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takashi Sekine, Toshiyuki Kawashima, Yasuki Takeuchi, Yuma Hatano
  • Publication number: 20180278007
    Abstract: A plate-like laser medium has a through-hole for providing a flow of a cooling medium. The laser medium unit includes the plurality of laser media. A laser beam amplification device includes a laser medium unit 10, an excitation light source 21 that causes excitation light to enter the laser medium unit 10, a through-hole 16a of a window member as a unit for supplying the cooling medium in a through-hole 14a of the laser medium 14, and a cooling medium flow path F1 arranged around the laser medium unit 10.
    Type: Application
    Filed: January 13, 2016
    Publication date: September 27, 2018
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Takashi SEKINE, Yoshinori KATO, Yoshinori TAMAOKI, Takashi KURITA, Toshiyuki KAWASHIMA, Takaaki MORITA
  • Patent number: 10063026
    Abstract: A laser medium unit 10 in a laser beam amplification device includes a plurality of laser media 14. A cooling medium flow path F1 is provided around the laser medium unit 10 to cool the laser medium unit 10 from outside. A sealed space between the laser media 14 is filled with gas or liquid, and a laser beam for passing through the sealed space is not interfered by a cooling medium flowing outside. Therefore, a fluctuation of an amplified laser beam is prevented, and a quality such as stability and focusing characteristics of the laser beam is improved.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: August 28, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takashi Sekine, Yoshinori Kato, Yoshinori Tamaoki, Takashi Kurita, Toshiyuki Kawashima, Takaaki Morita
  • Patent number: 9953729
    Abstract: A radiation generating apparatus comprises a fuel storage unit 20 for storing a mixed liquid 61, a pressure application unit 10 for applying a pressure to the mixed liquid 61, a jet formation unit 30 for forming a jet 61a of the mixed liquid 61, a reaction unit 44 for forming the jet 61a of the mixed liquid 61 therein, a pressure adjustment unit 41 for setting a pressure in the reaction unit 44 lower than an internal pressure of the jet formation unit 30, and a light source unit 45 for irradiating a particle group 63a with laser light L1.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: April 24, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takeshi Watari, Katsunobu Nishihara, Masaru Takagi, Nakahiro Satoh, Toshiyuki Kawashima, Hirofumi Kan
  • Publication number: 20180006423
    Abstract: A laser medium unit 10 in a laser beam amplification device includes a plurality of laser media 14. A cooling medium flow path F1 is provided around the laser medium unit 10 to cool the laser medium unit 10 from outside. A sealed space between the laser media 14 is filled with gas or liquid, and a laser beam for passing through the sealed space is not interfered by a cooling medium flowing outside. Therefore, a fluctuation of an amplified laser beam is prevented, and a quality such as stability and focusing characteristics of the laser beam is improved.
    Type: Application
    Filed: January 13, 2016
    Publication date: January 4, 2018
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Takashi SEKINE, Yoshinori KATO, Yoshinori TAMAOKI, Takashi KURITA, Toshiyuki KAWASHIMA, Takaaki MORITA
  • Publication number: 20170341990
    Abstract: A problem to be solved is to provide a method for processing zirconia without producing a monoclinic crystal. The solution is a method for processing zirconia, including the step of irradiating the zirconia with a laser with a pulse duration of 10?12 seconds to 10?15 seconds at an intensity of 1013 to 1015 W/cm2.
    Type: Application
    Filed: August 10, 2015
    Publication date: November 30, 2017
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Osamu KOMEDA, Takuya KONDO, Toshiyuki KAWASHIMA, Hirofumi KAN, Nakahiro SATOH, Takashi SEKINE, Takashi KURITA, Atsushi SUNAHARA, Tomoyoshi MOTOHIRO, Tatsumi HIOKI, Hirozumi AZUMA, Shigeki OHSHIMA, Tsutomu KAJINO, Yoneyoshi KITAGAWA, Yoshitaka MORI, Katsuhiro ISHII, Ryohei HANAYAMA, Yasuhiko NISHIMURA, Eisuke MIURA
  • Publication number: 20170330636
    Abstract: The laser amplification apparatus is provided with a plurality of plate-shaped laser medium components (M1 to M4) which are disposed to be aligned along a thickness direction, and prisms (P1 to P3) which optically couples the laser medium components. Each of the laser medium components is provided with a main surface to which a seed light is incident, and a side surface which surrounds the main surface. An excitation light is incident from at least one side surface of a specific laser medium component among the plurality of laser medium components. The excitation light is incident through the prism to a side surface of the laser medium component adjacent to the prism.
    Type: Application
    Filed: November 18, 2015
    Publication date: November 16, 2017
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Takashi SEKINE, Yoshinori KATO, Yasuki TAKEUCHI, Toshiyuki KAWASHIMA
  • Patent number: 9805829
    Abstract: A target shell monitoring device 4 that monitors an attitude and a position of the target shell Tg1, a compression laser output device 5a that irradiates the target shell Tg1 with a compression laser light LS1, and a heating laser output device 6 that irradiates the target shell Tg1 with a heating laser light LS3 following the compression laser light LS1 are provided. The target shell Tg1 has a hollow spherical shell shape, includes an approximately spherical space Sp on an inner side thereof, includes at least one through hole H1 connecting an outer side thereof and the space Sp, and includes, on an outer surface Sf1 thereof, irradiation areas Ar1 and Ar2 to be irradiated with compression laser lights.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: October 31, 2017
    Assignees: HAMAMATSU PHOTONICS K.K., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Sekine, Takashi Kurita, Toshiyuki Kawashima, Nakahiro Satoh, Hirofumi Kan, Yoneyoshi Kitagawa, Yoshitaka Mori, Katsuhiro Ishii, Kazuhisa Fujita, Ryohei Hanayama, Shinichiro Okihara, Atsushi Sunahara, Osamu Komeda, Naoki Nakamura, Yasuhiko Nishimura, Hirozumi Azuma
  • Publication number: 20170171956
    Abstract: The present invention relates to a method for manufacturing a tracer-encapsulated solid pellet for magnetic-confinement fusion, the method comprising a liquid droplet formation step of discharging an organic liquid containing an organic solvent into a stabilizing liquid to thereby form liquid droplets 12, and an organic solvent removal step of removing the organic solvent from the liquid droplets 12A. The organic liquid to be used is a liquid having a first organic polymer containing tracer atoms and a second organic polymer being an organic polymer different from the first organic polymer dissolved in the organic solvent, wherein the first organic polymer and the second organic polymer can be mutually phase-separated.
    Type: Application
    Filed: May 15, 2015
    Publication date: June 15, 2017
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Nakahiro SATOH, Ryo YOSHIMURA, Masaru TAKAGI, Toshiyuki KAWASHIMA, Hirofumi KAN
  • Patent number: 9672944
    Abstract: An object of the present invention is to efficiently improve uniformity of energy lines to be irradiated.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: June 6, 2017
    Assignees: OSAKA UNIVERSITY, HAMAMATSU PHOTONICS K.K.
    Inventors: Masakatsu Murakami, Nobuhiko Sarukura, Hiroshi Azechi, Ryo Yasuhara, Toshiyuki Kawashima, Hirofumi Kan
  • Publication number: 20170133110
    Abstract: The present invention relates to a method for manufacturing a fuel capsule for laser fusion, the method including a liquid droplet formation step, using a combined nozzle 3 equipped with a first nozzle 6 and a second nozzle 7 having a discharge port surrounding a discharge port 61 of the first nozzle, of discharging water 8 from the first nozzle and organic liquids 9A, 9B containing an organic solvent from the second nozzle simultaneously into a stabilizing liquid 13 to thereby form liquid droplets 12 in which the water is covered with the organic liquids, an organic solvent removal step of removing the organic solvent from the liquid droplets, and a water removal step of removing the water covered with the organic liquid having formed the liquid droplets. The first organic polymer and the second organic polymer are used which can be mutually phase-separated.
    Type: Application
    Filed: May 15, 2015
    Publication date: May 11, 2017
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Nakahiro SATOH, Ryo YOSHIMURA, Masaru TAKAGI, Toshiyuki KAWASHIMA, Hirofumi KAN
  • Publication number: 20160370593
    Abstract: Provided is a laser device including N semiconductor laser array stacks, a prismatic optical system that shifts optical axes of luminous fluxes respectively output from the N semiconductor laser array stacks so as to decrease intervals among the luminous fluxes, and an imaging optical system that causes the luminous fluxes to be condensed and deflected for each luminous flux. The imaging optical system causes the luminous fluxes to be deflected so that the luminous fluxes overlap each other at a predetermined position and generates a light-condensing point of the luminous fluxes between the imaging optical system and the predetermined position.
    Type: Application
    Filed: May 23, 2014
    Publication date: December 22, 2016
    Inventors: Takashi SEKINE, Toshiyuki KAWASHIMA, Yasuki TAKEUCHI, Yuma HATANO
  • Patent number: 9359279
    Abstract: A method of treating cancer, inflammatory disease, and autoimmune disease by administering to a subject in need thereof an effective amount of one or more 1,5-dipenylpenta-1,4-dien-3-one compounds. The compounds feature either or both of the phenyl rings being substituted with hydroxyl, diethyl(2-alkoxyethyl)amine, 1-(2-alkoxyethyl)piperidine, sulfonate, phosphinate, or phosphate.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: June 7, 2016
    Assignee: Allianz Pharmascience Ltd.
    Inventors: Charles C-Y Shih, Toshio Kitamura, Qian Shi, Toshiyuki Kawashima, Hui-Kang Wang
  • Patent number: 9363882
    Abstract: An object is to be capable of inducing a nuclear fusion reaction at a relatively high efficiency and downsize a device. A nuclear fusion device 1 of the present invention includes a nuclear fusion target 7 including a target substrate 7a containing deuterium or tritium and a thin-film layer 7b containing deuterium or tritium stacked on the target substrate 7a, a vacuum container 5 for storing the nuclear fusion target 7, and a laser unit 3 for irradiating two successive first and second pulsed laser lights P1, P2 toward the thin-film layer 7b of the nuclear fusion target 7, and the intensity of the first pulsed laser light P1 is set to a value that is smaller than that of the second pulsed laser light P2 and allows peeling of the thin-film layer 7b from the target substrate 7a.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: June 7, 2016
    Assignees: HAMAMATSU PHOTONICS K.K., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Sekine, Toshiyuki Kawashima, Hirofumi Kan, Yoneyoshi Kitagawa, Yoshitaka Mori, Hirozumi Azuma, Tatsumi Hioki, Tomoyoshi Motohiro, Yasushi Miyamoto, Naoki Nakamura
  • Publication number: 20160104547
    Abstract: An object of the present invention is to efficiently improve uniformity of energy lines to be irradiated.
    Type: Application
    Filed: November 23, 2015
    Publication date: April 14, 2016
    Inventors: Masakatsu MURAKAMI, Nobuhiko SARUKURA, Hiroshi AZECHI, Ryo YASUHARA, Toshiyuki KAWASHIMA, Hirofumi KAN
  • Patent number: 9230694
    Abstract: An object of the present invention is to efficiently improve uniformity of energy lines to be irradiated.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: January 5, 2016
    Assignees: OSAKA UNIVERSITY, HAMAMATSU PHOTONICS K.K.
    Inventors: Masakatsu Murakami, Nobuhiko Sarukura, Hiroshi Azechi, Ryo Yasuhara, Toshiyuki Kawashima, Hirofumi Kan
  • Publication number: 20150294744
    Abstract: The device has a target supply unit 4a for supplying a target 2a to a chamber 3a, a target monitor 5a for monitoring the target 2a present inside the chamber 3a, a laser light irradiator 6a for irradiating the target 2a present inside the chamber 3a, with laser light 8a, and a controller 7a. The target supply unit 4a emits the target 2a at a timing for emitting, that is controlled by the controller 7a, into a preset emission direction 3d inside the chamber 3a, and the controller 7a calculates an irradiation point 4d with the laser light 8a, calculates a timing for arriving of the target 2a at the irradiation point 4d, and makes the laser light irradiator 6a irradiate the target with the laser light, based on the irradiation point 4d and the timing for arriving.
    Type: Application
    Filed: October 4, 2013
    Publication date: October 15, 2015
    Applicants: HAMAMATSU PHOTONICS K.K., TOYOTA JIDOSHA KABUSHIKI KAISHA, The Graduate School for the Creation of New Photonics Industries
    Inventors: Takashi Sekine, Toshiyuki Kawashima, Nakahiro Satoh, Yoneyoshi Kitagawa, Yoshitaka Mori, Katsuhiro Ishii, Ryohei Hanayama, Osamu Komeda, Yasuhiko Nishimura, Mitsutaka Kakeno