Patents by Inventor Tsung-Yen Lee

Tsung-Yen Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200310259
    Abstract: A system is disclosed. The system includes a cleaning device and a scanner device. The cleaning device is configured to clean a mask. The scanner device is coupled to the cleaning device and is configured to receive the mask, a reference image and a real-time image that is captured at the mask. The reference image includes at least one first mark image having a plurality of mapping marks on the mask. The real-time image includes at least one second mark image having the plurality of mapping marks on the mask. The scanner device is configured to map the at least one second mark image in the real-time image with the at least one first image in the reference image, when a lithography exposing process is performed. A method is also disclosed herein.
    Type: Application
    Filed: June 15, 2020
    Publication date: October 1, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hao-Yu LAN, Po-Chung CHENG, Ching-Juinn HUANG, Tzung-Chi FU, Tsung-Yen LEE
  • Patent number: 10714371
    Abstract: A reticle holding tool is provided. The reticle holding tool includes a housing including a top housing member and a lateral housing member. The lateral housing member extends from the top housing member and terminates at a lower edge. The reticle holding tool further includes a reticle chuck. The reticle chuck is positioned in the housing and configured to secure a reticle. The reticle holding tool also includes a gas delivery assembly. The gas delivery assembly is positioned within the housing and configured to supply gas into the housing.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: July 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chueh-Chi Kuo, Tsung-Yen Lee, Chia-Hsin Chou, Tzung-Chi Fu, Li-Jui Chen, Po-Chung Cheng, Che-Chang Hsu
  • Patent number: 10684561
    Abstract: A method includes the following operations. A reference image of a mask having a plurality of mapping marks is acquired. A lithography exposing process is performed by a scanner with the mask to a photoresist layer which is formed on a substrate. Performing the lithography exposing process includes mapping a real-time image of the mask with the reference image of the mask.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: June 16, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hao-Yu Lan, Po-Chung Cheng, Ching-Juinn Huang, Tzung-Chi Fu, Tsung-Yen Lee
  • Publication number: 20200133143
    Abstract: A method includes the following operations. A reference image of a mask having a plurality of mapping marks is acquired. A lithography exposing process is performed by a scanner with the mask to a photoresist layer which is formed on a substrate. Performing the lithography exposing process includes mapping a real-time image of the mask with the reference image of the mask.
    Type: Application
    Filed: July 19, 2019
    Publication date: April 30, 2020
    Inventors: Hao-Yu LAN, Po-Chung CHENG, Ching-Juinn HUANG, Tzung-Chi FU, Tsung-Yen LEE
  • Publication number: 20200035483
    Abstract: A particle removal apparatus is provided. The particle removal apparatus includes a reticle holder configured to hold a reticle. The particle removal apparatus further includes a robotic arm. The particle removal apparatus also includes a particle removal device disposed on the robotic arm, and the particle removal device includes a solution spraying module. In addition, the robotic arm and the particle removal device are configured to align with a particle on a backside of the reticle, and the solution spraying module is configured to spray a solution onto the particle to remove the particle.
    Type: Application
    Filed: November 7, 2018
    Publication date: January 30, 2020
    Inventors: Siao-Chian HUANG, Po-Chung CHENG, Ching-Juinn HUANG, Tzung-Chi FU, Tsung-Yen LEE
  • Publication number: 20190155139
    Abstract: A reticle, a reticle container and a method for discharging static charges accumulated on a reticle are provided. The reticle includes a mask substrate, a reflective multilayer (ML) structure, a capping layer, an absorption structure and a conductive material structure. The mask substrate has a front-side surface and a back-side surface. The reflective ML structure is positioned over the front-side surface of mask substrate. The capping layer is positioned over the reflective ML structure. The absorption structure is positioned over the capping layer. The conductive material structure is positioned over a sidewall surface of the mask substrate and a sidewall surface of the absorption structure.
    Type: Application
    Filed: January 31, 2018
    Publication date: May 23, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Lun CHANG, Chueh-Chi KUO, Tsung-Yen LEE, Tzung-Chi FU, Li-Jui CHEN, Po-Chung CHENG, Che-Chang HSU
  • Publication number: 20190148203
    Abstract: A reticle holding tool is provided. The reticle holding tool includes a housing including a top housing member and a lateral housing member. The lateral housing member extends from the top housing member and terminates at a lower edge. The reticle holding tool further includes a reticle chuck. The reticle chuck is positioned in the housing and configured to secure a reticle. The reticle holding tool also includes a gas delivery assembly. The gas delivery assembly is positioned within the housing and configured to supply gas into the housing.
    Type: Application
    Filed: July 25, 2018
    Publication date: May 16, 2019
    Inventors: Chueh-Chi KUO, Tsung-Yen LEE, Chia-Hsin CHOU, Tzung-Chi FU, Li-Jui CHEN, Po-Chung CHENG, Che-Chang HSU
  • Patent number: 9412632
    Abstract: A reticle pod includes an outer pod shell and an outer pod door disposed under the outer pod shell. The outer pod door has at least one gas control hole. A seal ring is disposed between the outer pod shell and the outer pod door. A valve is disposed in each gas control hole. The outer pod shell and the outer pod door are configured to form an enclosure space in order to store a reticle. The seal ring seals the gap between the outer pod shell and the outer pod door. The at least one valve is configured to control gas flow in and out of the enclosure space.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: August 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Yen Lee, Jeng-Horng Cheng, Jui-Ching Wu
  • Patent number: 9127984
    Abstract: A SERS-active structure includes a substrate, at least one metal nanoparticle, a dielectric layer and a metal nanolayer. The metal nanoparticles are disposed on the substrate. The substrate and the metal nanoparticles are covered by the dielectric layer, so that the dielectric layer forms a recessed portion with a dihedral angle formed by a surface of the dielectric layer at which the at least one metal nanoparticle contacts the substrate. The dielectric layer is covered by the metal nanolayer and the metal nanolayer has a gap located at and exposing the recessed portion.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: September 8, 2015
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Fan-Gang Tseng, Teng-Feng Kuo, Tsung-Yen Lee
  • Publication number: 20140116920
    Abstract: A reticle pod includes an outer pod shell and an outer pod door disposed under the outer pod shell. The outer pod door has at least one gas control hole. A seal ring is disposed between the outer pod shell and the outer pod door. A valve is disposed in each gas control hole. The outer pod shell and the outer pod door are configured to form an enclosure space in order to store a reticle. The seal ring seals the gap between the outer pod shell and the outer pod door. The at least one valve is configured to control gas flow in and out of the enclosure space.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Yen Lee, Jeng-Horng Cheng, Jui-Ching Wu
  • Publication number: 20140043605
    Abstract: A SERS-active structure includes a substrate, at least one metal nanoparticle, a dielectric layer and a metal nanolayer. The metal nanoparticles are disposed on the substrate. The substrate and the metal nanoparticles are covered by the dielectric layer, so that the dielectric layer forms a recessed portion with a dihedral angle formed by a surface of the dielectric layer at which the at least one metal nanoparticle contacts the substrate. The dielectric layer is covered by the metal nanolayer and the metal nanolayer has a gap located at and exposing the recessed portion.
    Type: Application
    Filed: January 25, 2013
    Publication date: February 13, 2014
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventors: Fan-Gang TSENG, Teng-Feng KUO, Tsung- Yen LEE
  • Patent number: 8476843
    Abstract: A driving circuit for a single-string light-emitting diode (LED) lamp includes a push-pull converter. The push-pull converter converts an input low DC voltage (such as 12-19V) to a high DC voltage (such as above 200V) to supply power to the single-string LED lamp. The driving circuit controls a lamp current flowing through the single-string LED lamp by constant current and adjusts brightness of the single-string LED lamp by pulse-width modulation (PWM) dimming. In addition, the single-string LED lamp provides the standardization design for connectors of the driving circuit used to connect to the single-string LED lamp so that the driving circuit has a better common-use characteristic. Moreover, the driving circuit does not need a current balance circuit and only needs a cheaper and general-purpose integrated circuit to control the push-pull converter to reduce design cost of the driving circuit.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: July 2, 2013
    Assignee: TPV Electronics (Fujian) Co., Ltd.
    Inventors: Zuo-Shang Yu, Tsung-Yen Lee
  • Patent number: 8368322
    Abstract: A driving circuit for an LED lamp including no more than 4 strings each having an input and an output terminals outputs a DC voltage of no more than 70V to the input terminals. The driving circuit includes constant current circuits each coupled between the output terminal of a corresponding string and ground. An on-off control signal controls whether the constant current circuits work to control whether the LED lamp works. A dimming control signal controls a duty cycle of working of to the constant current circuits to control a brightness of the LED lamp. The driving circuit further includes an overvoltage protection circuit and a switch. When a voltage at one input terminal is too high or a short circuit occurs in one string, the overvoltage protection circuit outputs an overvoltage control signal and accordingly the switch forces the on-off control signal to control the constant current circuits not to work.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: February 5, 2013
    Assignee: TPV Electronics (Fujian) Co., Ltd.
    Inventors: Zuo-Shang Yu, Tsung-Yen Lee, Jie Feng
  • Publication number: 20120181950
    Abstract: A driving circuit for a single-string light-emitting diode (LED) lamp includes a push-pull converter. The push-pull converter converts an input low DC voltage (such as 12-19V) to a high DC voltage (such as above 200V) to supply power to the single-string LED lamp. The driving circuit controls a lamp current flowing through the single-string LED lamp by means of constant current and adjusts brightness of the single-string LED lamp by means of pulse-width modulation (PWM) dimming. In addition, the single-string LED lamp provides the standardization design for connectors of the driving circuit used to connect to the single-string LED lamp so that the driving circuit has better common-use characteristic. Moreover, the driving circuit does not need a current balance circuit and only needs a cheaper and general-purpose integrated circuit to control the push-pull converter to reduce design cost of the driving circuit.
    Type: Application
    Filed: January 17, 2011
    Publication date: July 19, 2012
    Applicant: TPV ELECTRONICS (FUJIAN) CO., LTD.
    Inventors: ZUO-SHANG YU, TSUNG-YEN LEE
  • Publication number: 20110309758
    Abstract: A driving circuit for an LED lamp including no more than 4 strings each having an input and an output terminals outputs a DC voltage of no more than 70V to the input terminals. The driving circuit includes constant current circuits each coupled between the output terminal of a corresponding string and ground. An on-off control signal controls whether the constant current circuits work to control whether the LED lamp works. A dimming control signal controls a duty cycle of working of to the constant current circuits to control a brightness of the LED lamp. The driving circuit further includes an overvoltage protection circuit and a switch. When a voltage at one input terminal is too high or a short circuit occurs in one string, the overvoltage protection circuit outputs an overvoltage control signal and accordingly the switch forces the on-off control signal to control the constant current circuits not to work.
    Type: Application
    Filed: February 18, 2011
    Publication date: December 22, 2011
    Applicant: TPV ELECTRONICS (FUJIAN) CO., LTD.
    Inventors: ZUO-SHANG YU, TSUNG-YEN LEE, JIE FENG