Patents by Inventor Tsung-Yuan Hsu

Tsung-Yuan Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953740
    Abstract: A package structure including a photonic, an electronic die, an encapsulant and a waveguide is provided. The photonic die includes an optical coupler. The electronic die is electrically coupled to the photonic die. The encapsulant laterally encapsulates the photonic die and the electronic die. The waveguide is disposed over the encapsulant and includes an upper surface facing away from the encapsulant. The waveguide includes a first end portion and a second end portion, the first end portion is optically coupled to the optical coupler, and the second end portion has a groove on the upper surface.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Patent number: 11947173
    Abstract: A package includes a photonic layer on a substrate, the photonic layer including a silicon waveguide coupled to a grating coupler; an interconnect structure over the photonic layer; an electronic die and a first dielectric layer over the interconnect structure, where the electronic die is connected to the interconnect structure; a first substrate bonded to the electronic die and the first dielectric layer; a socket attached to a top surface of the first substrate; and a fiber holder coupled to the first substrate through the socket, where the fiber holder includes a prism that re-orients an optical path of an optical signal.
    Type: Grant
    Filed: May 5, 2023
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Publication number: 20240069277
    Abstract: A semiconductor package includes a first die stack structure and a second die stack structure, an insulating encapsulation, a redistribution structure, at least one prism structure and at least one reflector. The first die stack structure and the second die stack structure are laterally spaced apart from each other along a first direction, and each of the first die stack structure and the second die stack structure comprises an electronic die; and a photonic die electronically communicating with the electronic die. The insulating encapsulation laterally encapsulates the first die stack structure and the second die stack structure. The redistribution structure is disposed on the first die stack structure, the second die stack structure and the insulating encapsulation, and electrically connected to the first die stack structure and the second die stack structure. The at least one prism structure is disposed within the redistribution structure and optically coupled to the photonic die.
    Type: Application
    Filed: August 29, 2022
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Yi Kuo, Chen-Hua Yu, Cheng-Chieh Hsieh, Che-Hsiang Hsu, Chung-Ming Weng, Tsung-Yuan Yu
  • Patent number: 8912711
    Abstract: In an embodiment, a thermal stress resistant resonator is disclosed. The thermal stress resistant resonator may include or comprise a piezoelectric member having one or more non-linear piezoelectric support members extending there from.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: December 16, 2014
    Assignee: HRL Laboratories, LLC
    Inventors: David T. Chang, Tsung-Yuan Hsu
  • Patent number: 8593037
    Abstract: A quartz resonator flow cell has a piezoelectric quartz wafer with an electrode, pads, and interconnects disposed on a first side thereof. The piezoelectric quartz wafer has a second electrode disposed on a second side thereof, the second electrode opposing the first electrode. A substrate is provided having fluid ports therein and the piezoelectric quartz wafer is mounted to the substrate such that the second side thereof faces the substrate with a cavity being formed between the substrate and the wafer. The fluid ports in the substrate are aligned with the electrode on the second side of the piezoelectric quartz wafer which is in contact with the cavity.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: November 26, 2013
    Assignee: HRL Laboratories, LLC
    Inventors: Randall L. Kubena, Tsung-Yuan Hsu
  • Patent number: 8485417
    Abstract: A micromachined switch is provided including a base substrate, a bond pad on the base substrate, a cantilever arm connected to the bond pad, the cantilever arm having a conductive via from the bond pad, a first actuation electrode on the base substrate, and a second actuation electrode on the cantilever arm connected to the bond pad by way of the conductive via, positioned such that an actuation voltage applied between the first actuation electrode and the second actuation electrode will deform the cantilever arm, wherein the first actuation electrode is facing a side of the cantilever arm opposite the second actuation electrode.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: July 16, 2013
    Assignee: HRL Laboratories, LLC
    Inventors: David T. Chang, Tsung-Yuan Hsu
  • Patent number: 8246846
    Abstract: A method for fabricating integrated MEMS switches and filters includes forming cavities in a silicon substrate, metalizing a first pattern on a quartz substrate to form first switch and filter elements, bonding the quartz substrate to the silicon substrate so that the first switch and filter elements are located within one of the cavities, thinning the quartz substrate, forming conductive vias in the quartz substrate, metalizing a second pattern on a second surface of the quartz substrate to form second switch and filter elements, etching the quartz substrate to separate MEMS switches from filters, forming protrusions on a host substrate, metalizing a third metal pattern on the host substrate to form metal anchors and third switch elements, compression bonding the metal anchors on the host substrate to second switch and filter elements, forming signal lines to integrate the MEMS switches and filters and removing the silicon substrate.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: August 21, 2012
    Assignee: HRL Laboratories, LLC
    Inventors: David T. Chang, Tsung-Yuan Hsu
  • Patent number: 8242865
    Abstract: A micromachined switch is provided including a base substrate, a bond pad on the base substrate, a cantilever arm connected to the bond pad, the cantilever arm having a conductive via from the bond pad, a first actuation electrode on the base substrate, and a second actuation electrode on the cantilever arm connected to the bond pad by way of the conductive via, positioned such that an actuation voltage applied between the first actuation electrode and the second actuation electrode will deform the cantilever arm, wherein the first actuation electrode is facing a side of the cantilever arm opposite the second actuation electrode.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: August 14, 2012
    Assignee: HRL Laboratories, LLC
    Inventors: David T. Chang, Tsung-Yuan Hsu
  • Patent number: 8176607
    Abstract: A method for fabricating VHF and/or UHF quartz resonators (for higher sensitivity) in a cartridges design with the quartz resonators requiring much smaller sample volumes than required by conventional resonators, and also enjoying smaller size and more reliable assembly. MEMS fabrication approaches are used to fabricate with quartz resonators in quartz cavities with electrical interconnects on a top side of a substrate for electrical connection to the electronics preferably through pressure pins in a plastic module. An analyte is exposed to grounded electrodes on a single side of the quartz resonators, thereby preventing electrical coupling of the detector signals through the analyte. The resonators can be mounted on the plastic cartridge or on arrays of plastic cartridges with the use of inert bonding material, die bonding or wafer bonding techniques. This allows the overall size, cost, and required biological sample volume to be reduced while increasing the sensitivity for detecting small mass changes.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: May 15, 2012
    Assignee: HRL Laboratories, LLC
    Inventors: Randall L. Kubena, Tsung-Yuan Hsu
  • Patent number: 8059045
    Abstract: An antenna having an impedance matching section for attaching to a sheet or a garment. The antenna has a first, a second, and a third leaky substantially coaxial conductor. The first and the third coaxial conductors have an electrically conductive layer placed on the dielectric in a double helix. The second coaxial conductor has an electrically conductive layer placed on the dielectric in a single helix. The first coaxial conductor is coupled to the second coaxial conductor, the second coaxial conductor is coupled to the third coaxial conductor; and the third coaxial conductor is coupled in use to a first termination impedance. Methods to make the foregoing structures are also described.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: November 15, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: James H. Schaffner, Tsung-Yuan Hsu, Daniel F. Sievenpiper
  • Patent number: 7956818
    Abstract: An leaky coaxial cable antenna with high radiation efficiency and low insertion loss is described. The outer shield of the coaxial cable is constructed to facilitate energy transfer between the bifilar mode and the monofilar mode by constructing the outer conductor of a first conductive strip wrapped in a spiral about the dielectric and a plurality of second conductive strips wrapped in a counter spiral about the first but spaced serially along the length of the coaxial cable such that portions of the cable are wrapped by a single spiral and the other portions are wrapped by two spirals.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: June 7, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: Tsung-Yuan Hsu, James H Schaffner
  • Patent number: 7830227
    Abstract: A method for fabricating integrated MEMS switches and filters includes forming cavities in a silicon substrate, metalizing a first pattern on a quartz substrate to form first switch and filter elements, bonding the quartz substrate to the silicon substrate so that the first switch and filter elements are located within one of the cavities, thinning the quartz substrate, forming conductive vias in the quartz substrate, metalizing a second pattern on a second surface of the quartz substrate to form second switch and filter elements, etching the quartz substrate to separate MEMS switches from filters, forming protrusions on a host substrate, metalizing a third metal pattern on the host substrate to form metal anchors and third switch elements, compression bonding the metal anchors on the host substrate to second switch and filter elements, forming signal lines to integrate the MEMS switches and filters and removing the silicon substrate.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: November 9, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: David T. Chang, Tsung-Yuan Hsu
  • Patent number: 7653985
    Abstract: Disclosed are methods for fabricating a micro-electro-mechanical switch. The switch has a cantilever arm disposed on a substrate that can be moved in orthogonal directions for latching and unlatching. For latching, the cantilever arm is moved back by a comb-drive actuator and then pulled down by electrodes disposed on the substrate and the cantilever arm. The comb-drive actuator switch is then released and the cantilever arm moves forward to be captured by a dove-tail structure on the substrate. When the voltage is removed, the cantilever arm is held in place by the dove-tail structure. The switch is unlatched by actuating the comb-drive actuator to move the cantilever arm away from the dove-tail structure. The cantilever arm will then pop up once it is released from the dove-tail structure.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: February 2, 2010
    Assignees: HRL Laboratories, LLC, Boeing
    Inventors: David T. Chang, James H. Schaffner, Tsung-Yuan Hsu, Adele E. Schmitz
  • Patent number: 7629194
    Abstract: Apparatus for a micro-electro-mechanical switch that provides single pole, double throw switching action. The switch has two input lines and two output lines. The switch has a seesaw cantilever arm with contacts at each end that electrically connect the input lines with the output lines. The cantilever arm is latched into position by frictional forces between structures on the cantilever arm and structures on the substrate in which the cantilever arm is disposed. The state of the switch is changed by applying an electrostatic force at one end of the cantilever arm to overcome the mechanical force holding the other end of the cantilever arm in place.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: December 8, 2009
    Assignee: HRL Laboratories, LLC
    Inventors: James H. Schaffner, Tsung-Yuan Hsu, Adele E. Schmitz, Hui-Pin Hsu
  • Patent number: 7557677
    Abstract: In one embodiment, a cascaded monolithic crystal filter is provided. A first filter includes two resonators having a pair of electrodes with the monolithic crystal between. At least one electrode has a periphery which includes a feature capable of shifting a frequency associated with an anharmonic mode in the filter. The filter has a second resonator acoustically coupled to the first resonator. A second filter is cascaded with the first filter. The second filter includes a pair of acoustically coupled resonators.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: July 7, 2009
    Assignee: HRL Laboratories, LLC
    Inventors: Tsung-Yuan Hsu, Randall L. Kubena
  • Patent number: 7471258
    Abstract: A radiating coaxial cable transmission line that may be used as an antenna. Mechanisms are incorporated for boosting the rate of conversion of bifilar mode to monofilar mode.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: December 30, 2008
    Assignee: HRL Laboratories, LLC
    Inventors: Tsung-Yuan Hsu, Daniel F. Sievenpiper
  • Patent number: 7427961
    Abstract: A method for improving the efficiency of antennas having transparent thin-film conductive surfaces, and antennas improved by the method are disclosed. For a selected frequency of antenna operation, values for surface current density in areas distributed over the surface of the thin-film are determined. Regions of the surface containing areas having concentrated current flow are identified based upon the determined values of current density. Antenna efficiency is improved by increasing conductivity in areas of the thin-film surface found to have concentrated current flow. The method enables the improvement of the efficiency of antennas having transparent thin-film conducting surfaces, without unnecessarily obstructing the optical view through the thin-film surfaces of the antennas.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: September 23, 2008
    Assignee: GM Global Technology Operations, inc.
    Inventors: Hyok J. Song, Tsung Yuan Hsu, Daniel F. Sievenpiper, Timothy J. Talty, Hui-Pin Hsu
  • Patent number: 7405641
    Abstract: A micro-electro-mechanical switch is described. The switch comprises a substrate, with a signal transmission portion and an activation portion attached with the substrate. The activation portion includes an armature activation electrode positioned above a substrate activation electrode. The signal transmission portion includes a metal contact extending from a conducting transmission line and through a bottom insulating layer of the signal transmission portion, thereby being exposed for electrical contact. A mechanical linkage connects the activation portion with the signal transmission portion so that the activation portion and the signal transmission portion move in concert. When an activation signal is applied along the activation portion, both the activation portion and the signal transmission portion are drawn toward the substrate to a substantially closed position, where the metal contact of the signal transmission portion electrically contacts a signal transmission electrode.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: July 29, 2008
    Assignee: HRL Laboratories, LLC
    Inventors: Tsung-Yuan Hsu, Adele Schmitz, David Chang, Robert Loo
  • Patent number: 7388186
    Abstract: An optically controlled mechanical device actuated by electrostatic forces. The device includes electrostatic plates disposed on opposing portions of the device to accumulate charge; conductors to conduct charge to the electrostatic plates from a bias supply; and a photoelectric element having a photoresistive element arranged to affect a quantity of charge reaching the electrostatic plates from the bias supply. The device is caused to actuate to one position when the photoresistive element is exposed to a first level of illumination, and to a another position when the photoresistive element is exposed to a different second level of illumination.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: June 17, 2008
    Assignee: HRL Laboratories, LLC
    Inventors: Richard P. Berg, Tsung-Yuan Hsu
  • Patent number: 7345866
    Abstract: A method is provided of continuously varying the capacitance of a MEMS varactor having a cantilever assembly mounted on a base portion, the cantilever assembly having a first capacitance plate and a dielectric element mounted thereon, and the base portion having a second capacitance plate mounted thereon. The method includes applying a first actuation voltage to deform the cantilever assembly until the dielectric element contacts the second capacitance plate leaving a gap therebetween, and applying a second actuation voltage larger than the first actuation voltage to further deform the cantilever assembly to reduce the gap between the dielectric element and the second capacitance plate.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: March 18, 2008
    Assignee: HRL Laboratories, LLC
    Inventors: Tsung-Yuan Hsu, David Chang