Patents by Inventor Tsutomu Ishikawa

Tsutomu Ishikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240085874
    Abstract: An information processing device includes a memory, and a processor configured to execute a process. The process includes acquiring a first controller model, the first controller model including information indicating a control condition based on a measurement value, and information indicating a control action defining an action of a control target when the control condition is satisfied; and outputting a second controller model, the second controller model being capable of tolerating a measurement value including a measurement error, wherein the second controller model includes information indicating a control condition based on the information indicating the control condition included in the first controller model, and information indicating a control action based on the information indicating the control condition and the information indicating the control action included in the first controller model.
    Type: Application
    Filed: November 15, 2023
    Publication date: March 14, 2024
    Inventors: Tsutomu KOBAYASHI, Rick Salay, Ichiro Hasuo, Krzysztof Czarnecki, Fuyuki Ishikawa, Shinya Katsumata
  • Patent number: 11868021
    Abstract: A method for manufacturing an optical modulator is disclosed. The method includes a step of preparing a Mach-Zehnder modulator, a step of acquiring, based on a light transmittance in an arm waveguide, a relationship between a voltage applied to an electrode and a phase change amount of light propagating through the arm waveguide, a step of acquiring, based on the relationship, a voltage in which the phase change amount of the light propagating through the arm waveguide has a predetermined when the light is modulated, and a step of storing the voltage in a storage unit.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: January 9, 2024
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tsutomu Ishikawa, Naoya Kono
  • Patent number: 11480843
    Abstract: An optical transmitter includes a Mach-Zehnder modulator having an arm waveguide and a phase controller configured to control a phase of a light propagating through the arm waveguide by applying a voltage to the Mach-Zehnder modulator. When the voltage is deviated from a predetermined range, the phase controller shifts the voltage in the direction opposite to a direction of the deviation from the predetermined range by the amount corresponding to a change of 2? in the phase.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: October 25, 2022
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Tsutomu Ishikawa
  • Publication number: 20220244613
    Abstract: A method for manufacturing an optical modulator is disclosed. The method includes a step of preparing a Mach-Zehnder modulator, a step of acquiring, based on a light transmittance in an arm waveguide, a relationship between a voltage applied to an electrode and a phase change amount of light propagating through the arm waveguide, a step of acquiring, based on the relationship, a voltage in which the phase change amount of the light propagating through the arm waveguide has a predetermined when the light is modulated, and a step of storing the voltage in a storage unit.
    Type: Application
    Filed: January 7, 2022
    Publication date: August 4, 2022
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Tsutomu ISHIKAWA, Naoya KONO
  • Publication number: 20220236620
    Abstract: A method for manufacturing an optical modulator is disclosed. The optical modulator includes a Mach-Zehnder modulator, the Mach-Zehnder modulator including an electrode and an arm waveguide, the electrode being provided on the arm waveguide. The method includes a step of preparing the Mach-Zehnder modulator, a step of acquiring a relationship between a voltage applied to the electrode and a phase change amount of light propagating through the arm waveguide based on a light transmittance in the arm waveguide, a step of acquiring a voltage in which a range of a phase change amount of light in the Mach-Zehnder modulator has a predetermined range based on the relationship, and a step of storing the voltage in a storage unit.
    Type: Application
    Filed: January 11, 2022
    Publication date: July 28, 2022
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Tsutomu ISHIKAWA, Naoya KONO
  • Patent number: 11353728
    Abstract: An optical modulator includes a waveguide formed of a semiconductor and configured to allow light to propagate therethrough; a first electrode disposed on the waveguide and electrically connected to the waveguide; and a second electrode separated from the waveguide and electrically connected to the waveguide. An edge of the second electrode on a light entry side is located downstream of an edge of the first electrode on the light entry side in a propagation direction of the light.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: June 7, 2022
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hajime Tanaka, Tsutomu Ishikawa, Masataka Watanabe
  • Publication number: 20210364878
    Abstract: An optical transmitter includes a Mach-Zehnder modulator having an arm waveguide and a phase controller configured to control a phase of a light propagating through the arm waveguide by applying a voltage to the Mach-Zehnder modulator. When the voltage is deviated from a predetermined range, the phase controller shifts the voltage in the direction opposite to a direction of the deviation from the predetermined range by the amount corresponding to a change of 2? in the phase.
    Type: Application
    Filed: May 4, 2021
    Publication date: November 25, 2021
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Tsutomu ISHIKAWA
  • Patent number: 11069836
    Abstract: Described herein are methods for growing light emitting devices under ultra-violet (UV) illumination. A method includes growing a III-nitride n-type layer over a III-nitride p-type layer under UV illumination. Another method includes growing a light emitting device structure on a growth substrate and growing a tunnel junction on the light emitting device structure, where certain layers are grown under UV illumination. Another method includes forming a III-nitride tunnel junction n-type layer over the III-nitride p-type layer to form a tunnel junction light emitting diode. A surface of the III-nitride tunnel junction n-type layer is done under illumination during an initial period and a remainder of the formation is completed absent illumination. The UV light has photon energy higher than the III-nitride p-type layer's band gap energy. The UV illumination inhibits formation of Mg—H complexes within the III-nitride p-type layer resulting from hydrogen present in a deposition chamber.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: July 20, 2021
    Assignee: LUMILEDS LLC
    Inventors: Tsutomu Ishikawa, Isaac Wildeson, Erik Charles Nelson, Parijat Deb
  • Patent number: 11049780
    Abstract: An electronic module includes a substrate having flexibility and an electrical insulation property, a circuit unit in which an electronic device is mounted on a wiring pattern formed on at least any one of surfaces of the substrate, and a resin body in which the circuit unit is sealed with an electrical insulating resin, wherein the substrate has flexibility to be deformable due to a pressure during sealing with the electrical insulating resin.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: June 29, 2021
    Assignee: TATEYAMA KAGAKU CO., LTD.
    Inventors: Osamu Watanuki, Kenichi Honda, Orie Shinohara, Akira Ishikawa, Tsutomu Ishikawa
  • Patent number: 11048140
    Abstract: An optical modulator includes: a waveguide made of semiconductor, a light being input to one of ends of the waveguide; and a first electrode provided on the waveguide and overlapping with a part of the waveguide, wherein the waveguide has a first region to a third region along a propagation direction of the light from the one of ends, wherein neither the first region nor a part of the second region on a side of the first region in the propagation direction overlaps with the first electrode, wherein the third region and a part of the second region on a side of the third region in the propagation direction overlap with the first electrode, wherein a second width of the second region is larger than a first width of the first region and a third width of the third region.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: June 29, 2021
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hajime Tanaka, Tsutomu Ishikawa
  • Publication number: 20210055622
    Abstract: An optical modulator includes a waveguide formed of a semiconductor and configured to allow light to propagate therethrough; a first electrode disposed on the waveguide and electrically connected to the waveguide; and a second electrode separated from the waveguide and electrically connected to the waveguide. An edge of the second electrode on a light entry side is located downstream of an edge of the first electrode on the light entry side in a propagation direction of the light.
    Type: Application
    Filed: August 13, 2020
    Publication date: February 25, 2021
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hajime TANAKA, Tsutomu ISHIKAWA, Masataka WATANABE
  • Patent number: 10889557
    Abstract: A method of producing an alkoxyflavone derivative involves a step of reacting hydroxyflavone derivative which is shown in the below chemical formula and dialkyl sulfate in the presence of dimethyl sulfoxide and an alkali hydroxide. Further, in the chemical formula below, R11-R14, R21-R25 and R3 are independently one of hydrogen, hydroxyl group, ester group, alkoxy group, alkylenedioxy group, sulfonyl group and alkyl group, respectively. However, at least two of R21-R25 and R3 are hydroxyl groups.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: January 12, 2021
    Assignee: TOKIWA PHYTOCHEMICAL CO., LTD.
    Inventors: Jin Tatsuzaki, Tsutomu Ishikawa
  • Publication number: 20200192132
    Abstract: An optical modulator includes: a waveguide made of semiconductor, a light being input to one of ends of the waveguide; and a first electrode provided on the waveguide and overlapping with a part of the waveguide, wherein the waveguide has a first region to a third region along a propagation direction of the light from the one of ends, wherein neither the first region nor a part of the second region on a side of the first region in the propagation direction overlaps with the first electrode, wherein the third region and a part of the second region on a side of the third region in the propagation direction overlap with the first electrode, wherein a second width of the second region is larger than a first width of the first region and a third width of the third region.
    Type: Application
    Filed: November 25, 2019
    Publication date: June 18, 2020
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hajime TANAKA, Tsutomu ISHIKAWA
  • Publication number: 20200135598
    Abstract: An electronic module includes a substrate having flexibility and an electrical insulation property, a circuit unit in which an electronic device is mounted on a wiring pattern formed on at least any one of surfaces of the substrate, and a resin body in which the circuit unit is sealed with an electrical insulating resin, wherein the substrate has flexibility to be deformable due to a pressure during sealing with the electrical insulating resin.
    Type: Application
    Filed: April 17, 2018
    Publication date: April 30, 2020
    Applicant: TATEYAMA KAGAKU INDUSTRY CO., LTD.
    Inventors: Osamu WATANUKI, Kenichi HONDA, Orie SHINOHARA, Akira ISHIKAWA, Tsutomu ISHIKAWA
  • Publication number: 20200127166
    Abstract: Described herein are methods for growing light emitting devices under ultra-violet (UV) illumination. A method includes growing a III-nitride n-type layer over a III-nitride p-type layer under UV illumination. Another method includes growing a light emitting device structure on a growth substrate and growing a tunnel junction on the light emitting device structure, where certain layers are grown under UV illumination. Another method includes forming a III-nitride tunnel junction n-type layer over the III-nitride p-type layer to form a tunnel junction light emitting diode. A surface of the III-nitride tunnel junction n-type layer is done under illumination during an initial period and a remainder of the formation is completed absent illumination. The UV light has photon energy higher than the III-nitride p-type layer's band gap energy. The UV illumination inhibits formation of Mg—H complexes within the III-nitride p-type layer resulting from hydrogen present in a deposition chamber.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 23, 2020
    Applicant: Lumileds LLC
    Inventors: Tsutomu Ishikawa, Isaac Wildeson, Erik Charles Nelson, Parijat Deb
  • Patent number: 10541352
    Abstract: Described herein are methods for growing light emitting devices under ultra-violet (UV) illumination. A method includes growing a III-nitride n-type layer over a III-nitride p-type layer under UV illumination. Another method includes growing a light emitting device structure on a growth substrate and growing a tunnel junction on the light emitting device structure, where certain layers are grown under UV illumination. Another method includes forming a III-nitride tunnel junction n-type layer over the III-nitride p-type layer to form a tunnel junction light emitting diode. A surface of the III-nitride tunnel junction n-type layer is done under illumination during an initial period and a remainder of the formation is completed absent illumination. The UV light has photon energy higher than the III-nitride p-type layer's band gap energy. The UV illumination inhibits formation of Mg—H complexes within the III-nitride p-type layer resulting from hydrogen present in a deposition chamber.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: January 21, 2020
    Inventors: Tsutomu Ishikawa, Isaac Wildeson, Erik Charles Nelson, Parijat Deb
  • Publication number: 20180122989
    Abstract: Described herein are methods for growing light emitting devices under ultra-violet (UV) illumination. A method includes growing a III-nitride n-type layer over a III-nitride p-type layer under UV illumination. Another method includes growing a light emitting device structure on a growth substrate and growing a tunnel junction on the light emitting device structure, where certain layers are grown under UV illumination. Another method includes forming a III-nitride tunnel junction n-type layer over the III-nitride p-type layer to form a tunnel junction light emitting diode. A surface of the III-nitride tunnel junction n-type layer is done under illumination during an initial period and a remainder of the formation is completed absent illumination. The UV light has photon energy higher than the III-nitride p-type layer's band gap energy. The UV illumination inhibits formation of Mg—H complexes within the III-nitride p-type layer resulting from hydrogen present in a deposition chamber.
    Type: Application
    Filed: October 25, 2017
    Publication date: May 3, 2018
    Applicant: Lumileds LLC
    Inventors: Tsutomu ISHIKAWA, Isaac WILDESON, Erik Charles NELSON, Parijat DEB
  • Patent number: 9765765
    Abstract: Variable displacement compressor, with center bore 101b in a center part of cylinder block 101, includes: first bore 101b1 supporting plain bearing 131 of drive shaft 110; second bore 101b2 with a peripheral wall radially outside of first bore 101b1; and third bore 101b3 connected to a crank chamber and radially outside of a first bore 101b1. A pressure supply path 145 for flowing a part of a discharge refrigerant from a discharge chamber to the crank chamber includes: second bore 101b2; a first path 145a communicating second bore 101b2 with the discharge chamber; a second path 145b that communicates with second bore 101b2, and axially extends from one end surface of drive shaft 110 toward the inside of drive shaft 110; and a third path 145c substantially orthogonal to second path 145b and opens to an outer peripheral surface of drive shaft 110, and communicates with the crank chamber.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: September 19, 2017
    Assignee: SANDEN HOLDINGS CORPORATION
    Inventors: Tsutomu Ishikawa, Anri Enomoto, Yukihiko Taguchi
  • Patent number: 9595808
    Abstract: A method to control a wavelength tunable laser diode (tunable LD) is disclosed. The tunable LD includes a SG-DFB region and a CSG-DBR region to tune the emission wavelength thereof. The CSG-DBR region includes three segments, where the refractive indices of respective segments are variable by heaters provided therein. When the electrical power supplied to two segments is optionally selected, the power supplied to the rest segment is corrected by an offset from a value reflecting physical dimensions of the heaters. The offset is determined such that the tunable LD shows the best side mode suppression ratio (SMSR).
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: March 14, 2017
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Tsutomu Ishikawa
  • Publication number: 20160036199
    Abstract: A method to control a wavelength tunable laser diode (tunable LD) is disclosed. The tunable LD includes a SG-DFB region and a CSG-DBR region to tune the emission wavelength thereof. The CSG-DBR region includes three segments, where the refractive indices of respective segments are variable by heaters provided therein. When the electrical power supplied to two segments is optionally selected, the power supplied to the rest segment is corrected by an offset from a value reflecting physical dimensions of the heaters. The offset is determined such that the tunable LD shows the best side mode suppression ratio (SMSR).
    Type: Application
    Filed: October 5, 2015
    Publication date: February 4, 2016
    Inventor: Tsutomu Ishikawa