Patents by Inventor Valery N. Khabashesku

Valery N. Khabashesku has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240084665
    Abstract: A method of excluding particles entrained in formation fluids includes introducing a tubular into a wellbore, forming a sand control device formed from a curable inorganic cementitious mixture infused with an engineered degradable material about the tubular, introducing an external stimulus onto the sand control device causing the degradable material to dissolve, and flowing formation fluids through the sand control device into the tubular.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Rostyslav Dolog, Yash Parekh, Juan Carlos Flores Perez, Valery N. Khabashesku, Qusai A. Darugar
  • Patent number: 11927069
    Abstract: A downhole tool for controlling the flow of a fluid in a wellbore includes a component that comprises: a cementitious material; an aggregate; and a ductility modifying agent comprising one or more of the following: an ionomer; a functionalized filler; the functionalized filler comprising one or more of the following: functionalized carbon; functionalized clay; functionalized silica; functionalized alumina; functionalized zirconia; functionalized titanium dioxide; functionalized silsesquioxane; functionalized halloysite; or functionalized boron nitride; a metallic fiber; or a polymeric fiber.
    Type: Grant
    Filed: October 6, 2022
    Date of Patent: March 12, 2024
    Assignee: BAKER HUGHES HOLDINGS LLC
    Inventors: Rostyslav Dolog, Oleg A. Mazyar, Juan Carlos Flores Perez, Valery N. Khabashesku
  • Patent number: 11905786
    Abstract: A method of forming a sand control device comprising: infusing a curable inorganic mixture with a degradable material configured to disintegrate upon exposure to an external stimuli; forming the curable inorganic mixture infused with the degradable material about a tubular; and curing the curable inorganic mixture infused with the degradable material.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: February 20, 2024
    Assignee: BAKER HUGHES OILFIELD OPERATIONS LLC
    Inventors: Rostyslav Dolog, Yash Parekh, Juan Carlos Flores Perez, Valery N. Khabashesku, Qusai A. Darugar
  • Patent number: 11897767
    Abstract: A method for producing fluorinated boron nitride involves heating a reactor chamber, providing boron nitride in the reactor chamber, flowing fluorine and an inert gas through the reactor chamber, and exposing the boron nitride to the flowing gases and the heat. The method may include boron nitride that is exfoliated or non-exfoliated. The fluorinated boron nitride that is produced from this method may have a hexagonal crystal structure or a cubic crystal structure. The method may additionally comprise removing the fluorinated boron nitride from the reactor chamber and mixing it with a surfactant. A suspension may comprise particles of fluorinated boron nitride suspended in a fluid, which may be polar or non-polar, and may additionally include a surfactant. The fluorinated boron nitride may have a hexagonal or a cubic crystal structure. Furthermore, the boron nitride may be exfoliated or non-exfoliated.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: February 13, 2024
    Assignees: William Marsh Rice University, Baker Hughes Oilfield Operations LLC
    Inventors: Valery N. Khabashesku, Ashok Kumar Meiyazhagan, Pulickel M. Ajayan
  • Publication number: 20230094136
    Abstract: A downhole tool for controlling the flow of a fluid in a wellbore includes a component that comprises: a cementitious material; an aggregate; and a ductility modifying agent comprising one or more of the following: an ionomer; a functionalized filler; the functionalized filler comprising one or more of the following: functionalized carbon; functionalized clay; functionalized silica; functionalized alumina; functionalized zirconia; functionalized titanium dioxide; functionalized silsesquioxane; functionalized halloysite; or functionalized boron nitride; a metallic fiber; or a polymeric fiber.
    Type: Application
    Filed: October 6, 2022
    Publication date: March 30, 2023
    Inventors: Rostyslav Dolog, Oleg A. Mazyar, Juan Carlos Flores Perez, Valery N. Khabashesku
  • Patent number: 11492866
    Abstract: A downhole tool for controlling the flow of a fluid in a wellbore includes a component that comprises: a cementitious material; an aggregate; and a ductility modifying agent comprising one or more of the following: an ionomer; a functionalized filler; the functionalized filler comprising one or more of the following: functionalized carbon; functionalized clay; functionalized silica; functionalized alumina; functionalized zirconia; functionalized titanium dioxide; functionalized silsesquioxane; functionalized halloysite; or functionalized boron nitride; a metallic fiber; or a polymeric fiber.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: November 8, 2022
    Assignee: BAKER HUGHES HOLDINGS LLC
    Inventors: Rostyslav Dolog, Oleg A. Mazyar, Juan Carlos Flores Perez, Valery N. Khabashesku
  • Patent number: 11305251
    Abstract: A composition of matter includes a liquid and nanoparticles suspended in the liquid. The nanoparticles each include silica, alumina, and an organosilicon functional group having a molecular weight of at least 200. A method includes functionalizing a surface of nanoparticles with an organosilicon functional group and dispersing the nanoparticles in a liquid to form a suspension. The functional group has a molecular weight of at least 200. The nanoparticles each include silica and alumina at a surface thereof.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: April 19, 2022
    Assignee: Baker Hughes Holdings LLC
    Inventors: Radhika Suresh, Devesh K. Agrawal, Oleksandr V. Kuznetsov, Oleg A. Mazyar, Valery N. Khabashesku, Qusai Darugar
  • Publication number: 20220010198
    Abstract: A method of recovering hydrocarbons comprises introducing a suspension comprising nanoparticles to a material and contacting surfaces of the material with the suspension. After introducing the suspension comprising the nanoparticles to the material, the method further includes introducing at least one charged surfactant to the material and removing hydrocarbons from the material. Accordingly, in some embodiments, the nanoparticles may be introduced to the material prior to introduction of the surfactant to the material. Related methods of recovering hydrocarbons from a material are also disclosed.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Inventors: Oleksandr V. Kuznetsov, Devesh K. Agrawal, Radhika Suresh, Oleg A. Mazyar, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 11149184
    Abstract: A method of recovering hydrocarbons comprises introducing a suspension comprising nanoparticles to a material and contacting surfaces of the material with the suspension. After introducing the suspension comprising the nanoparticles to the material, the method further includes introducing at least one charged surfactant to the material and removing hydrocarbons from the material. Accordingly, in some embodiments, the nanoparticles may be introduced to the material prior to introduction of the surfactant to the material. Related methods of recovering hydrocarbons from a material are also disclosed.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: October 19, 2021
    Assignee: Baker Hughes Holdings LLC
    Inventors: Oleksandr V. Kuznetsov, Devesh K. Agrawal, Radhika Suresh, Oleg A. Mazyar, Valery N. Khabashesku, Qusai Darugar
  • Publication number: 20210188637
    Abstract: A method for producing fluorinated boron nitride involves heating a reactor chamber, providing boron nitride in the reactor chamber, flowing fluorine and an inert gas through the reactor chamber, and exposing the boron nitride to the flowing gases and the heat. The method may include boron nitride that is exfoliated or non-exfoliated. The fluorinated boron nitride that is produced from this method may have a hexagonal crystal structure or a cubic crystal structure. The method may additionally comprise removing the fluorinated boron nitride from the reactor chamber and mixing it with a surfactant. A suspension may comprise particles of fluorinated boron nitride suspended in a fluid, which may be polar or non-polar, and may additionally include a surfactant. The fluorinated boron nitride may have a hexagonal or a cubic crystal structure. Furthermore, the boron nitride may be exfoliated or non-exfoliated.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 24, 2021
    Inventors: Valery N. Khabashesku, Ashok Kumar Meiyazhagan, Pulickel M. Ajayan
  • Publication number: 20210134492
    Abstract: A method of treating an elongated conductive element comprises exposing a conductive element sequentially to at least two dopants being different in composition. The dopants may include an acidic dopant and a halogen-based dopant. The conductive element comprises a plurality of carbon nanotubes and has a linear density in a range from about 0.1 tex to about 2.0 tex. The method further comprises mechanically densifying the conductive element. The elongated conductive element comprises at least one carbon nanotube fiber doped with a plurality of p-type dopants comprising at least one acidic dopant and at least one halogen-based dopant. The at least one carbon nanotube fiber has an electrical resistivity equal to or less than about 55 ??·cm and an ultimate tensile strength equal to or greater than about 1 GPa.
    Type: Application
    Filed: January 11, 2021
    Publication date: May 6, 2021
    Inventors: Valery N. Khabashesku, Alexander Moravsky, Raouf Loutfy, Darryl N. Ventura
  • Patent number: 10962481
    Abstract: A method of analyzing a selected refinery chemical at a low concentration comprises contacting a sample with functionalized metallic nanoparticles that contain metallic nanoparticles functionalized with a functional group comprising a cyano group, a thiol group, a carboxyl group, an amino group, a boronic acid group, an aza group, an ether group, a hydroxyl group, or a combination comprising at least one of the foregoing; radiating the sample contacted with the functionalized metallic nanoparticles with electromagnetic radiation at a selected energy level; measuring a Raman spectrum emitted from the sample; and determining the presence or a concentration of a selected refinery chemical in the sample from the Raman spectrum.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: March 30, 2021
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Radhika Suresh, Sankaran Murugesan, Valery N. Khabashesku, Darryl Ventura
  • Patent number: 10927006
    Abstract: A method of making a thin film substrate involves exposing carbon nanostructures to a crosslinker to crosslink the carbon nanostructures. The crosslinked carbon nanostructures are recovered and disposed on a support substrate. A thin film substrate includes crosslinked carbon nanostructures on a support substrate. The crosslinked carbon nanostructures have a crosslinker between the carbon nanostructures. A method of performing surface enhanced Raman spectroscopy (SERS) on a SERS-active analyte involves providing a SERS-active analyte on such a thin film substrate, exposing the thin film substrate to Raman scattering, and detecting the SERS-active analyte.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: February 23, 2021
    Assignee: Baker Hughes Holdings LLC
    Inventors: Darryl N. Ventura, Rostyslav Dolog, Sankaran Murugesan, Radhika Suresh, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 10908092
    Abstract: A cyanide-functionalized gold nanoparticle. A method of making cyanide-functionalized gold nanoparticles includes forming an aqueous reaction mixture comprising a gold precursor and glycine, keeping the reaction mixture at about 18° C. to about 50° C. for at least 6 days to provide formation of the cyanide-functionalized gold nanoparticles, and isolating the cyanide-functionalized gold nanoparticles from the reaction mixture. A method of analyzing a sample, comprising contacting cyanide-functionalized gold nanoparticles with the sample and performing an analytical method on the sample. A sensor comprises cyanide-functionalized gold nanoparticles.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: February 2, 2021
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Radhika Suresh, Sankaran Murugesan, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 10907089
    Abstract: A method of stabilizing one or more clays within a subterranean formation comprises forming at least one treatment fluid comprising anionic silica particles, cationic silica particles, and at least one base material. The at least one treatment fluid is provided into a subterranean formation containing clay particles to attach at least a portion of the anionic silica particles and the cationic silica particles to surfaces of the clay particles and form stabilized clay particles. A method of treating one or more clays contained within a subterranean formation, and a treatment fluid for a subterranean formation.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: February 2, 2021
    Assignee: Baker Hughes Holdings LLC
    Inventors: Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku, John C. Welch
  • Patent number: 10892070
    Abstract: A method of treating an elongated conductive element comprises exposing a conductive element sequentially to at least two dopants being different in composition. The dopants may include an acidic dopant and a halogen-based dopant. The conductive element comprises a plurality of carbon nanotubes and has a linear density in a range from about 0.1 tex to about 2.0 tex. The method further comprises mechanically densifying the conductive element. The elongated conductive element comprises at least one carbon nanotube fiber doped with a plurality of p-type dopants comprising at least one acidic dopant and at least one halogen-based dopant. The at least one carbon nanotube fiber has an electrical resistivity equal to or less than about 55 ??·cm and an ultimate tensile strength equal to or greater than about 1 GPa.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: January 12, 2021
    Assignee: Baker Hughes Oilfield Operations, LLC
    Inventors: Valery N. Khabashesku, Alexander Moravsky, Raouf Loutfy, Darryl N. Ventura
  • Publication number: 20210002972
    Abstract: A method of forming a sand control device comprising: infusing a curable inorganic mixture with a degradable material configured to disintegrate upon exposure to an external stimuli; forming the curable inorganic mixture infused with the degradable material about a tubular; and curing the curable inorganic mixture infused with the degradable material.
    Type: Application
    Filed: July 2, 2019
    Publication date: January 7, 2021
    Applicant: Baker Hughes Oilfield Operations LLC
    Inventors: Rostyslav Dolog, Yash Parekh, Juan Carlos Flores Perez, Valery N. Khabashesku, Qusai A. Darugar
  • Publication number: 20200406217
    Abstract: A composition of matter includes a liquid and nanoparticles suspended in the liquid. The nanoparticles each include silica, alumina, and an organosilicon functional group having a molecular weight of at least 200. A method includes functionalizing a surface of nanoparticles with an organosilicon functional group and dispersing the nanoparticles in a liquid to form a suspension. The functional group has a molecular weight of at least 200. The nanoparticles each include silica and alumina at a surface thereof.
    Type: Application
    Filed: July 6, 2020
    Publication date: December 31, 2020
    Inventors: Radhika Suresh, Devesh K. Agrawal, Oleksandr V. Kuznetsov, Oleg A. Mazyar, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 10777806
    Abstract: An energy storage device including a first electrode comprising lithium, a second electrode comprising a metal diboride, an electrolyte disposed between the first electrode and the second electrode and providing a conductive pathway for lithium ions to move to and from the first electrode and the second electrode, and a separator within the electrolyte and between the first electrode and the second electrode. A method of forming an energy storage device including forming a first electrode to include lithium, forming a second electrode to include a metal diboride, disposing an electrolyte between the first electrode and the second electrode, the electrolyte providing a conductive pathway for lithium ions to move to and from the first electrode and the second electrode, and disposing a separator within the electrolyte and between the first electrode and the second electrode.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: September 15, 2020
    Assignees: Baker Hughes, a GE company, LLC, William Marsh Rice University
    Inventors: Zhou Zhou, Keiko Kato, Ganguli Babu, Valery N. Khabashesku, Pulickel M. Ajayan
  • Patent number: 10739269
    Abstract: A method of analyzing a well sample for a well treatment additive includes contacting the sample with functionalized metallic nanoparticles that contain metallic nanoparticles functionalized with a functional group including a cyano group, a thiol group, a carboxyl group, an amino group, a boronic acid group, an aza group, an ether group, a hydroxyl group, or a combination including at least one of the foregoing; irradiating the sample contacted with the functionalized metallic nanoparticles with electromagnetic radiation at a selected energy level; measuring a Raman spectrum emitted from the sample; and determining presence, type or concentration of the well treatment additive in the sample from the Raman spectrum.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: August 11, 2020
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Sankaran Murugesan, Radhika Suresh, Valery N. Khabashesku, Qusai Darugar, Stephen Mark Heath