Patents by Inventor Vamsidhar Velcheti

Vamsidhar Velcheti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11574404
    Abstract: Embodiments include controlling a processor to perform operations, the operations comprising accessing a digitized image of a region of tissue (ROT) demonstrating cancerous pathology; extracting a set of radiomic features from the digitized image, where the set of radiomic features are positively correlated with programmed death-ligand 1 (PD-L1) expression; providing the set of radiomic features to a machine learning classifier; receiving, from the machine learning classifier, a probability that the region of tissue will experience cancer recurrence, where the machine learning classifier computes the probability based, at least in part, on the set of radiomic features; generating a classification of the region of tissue as likely to experience recurrence or non-recurrence based, at least in part, on the probability; and displaying the classification and at least one of the probability, the set of radiomic features, or the digitized image.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: February 7, 2023
    Assignees: Case Western Reserve University, The Cleveland Clinic Foundation
    Inventors: Anant Madabhushi, Pranjal Vaidya, Kaustav Bera, Prateek Prasanna, Vamsidhar Velcheti
  • Publication number: 20220226355
    Abstract: Provided herein are compositions, systems, kits, and methods for treating a patient with cancer by alternate administration of decitabine and 5-azacytidine, or administration of decitabine two times per week on consecutive days, which is generally timed to bypass auto-dampening and exploit cross-priming. Such administration is combined with an inhibitor of the enzyme cytidine deaminase (e.g., tetrahydrouridine) that otherwise rapidly catabolizes decitabine and 5-azacytidine. In certain embodiments, the time between cycles of decitabine and 5-azacytidine administration is about three to four days or five to ten days.
    Type: Application
    Filed: May 22, 2020
    Publication date: July 21, 2022
    Inventors: Yogen Saunthararajah, Vamsidhar Velcheti, Kai Kang, Xiaorong Gu, Rita Tohme
  • Patent number: 11350901
    Abstract: Embodiments generate an early stage NSCLC recurrence prognosis, and predict added benefit of adjuvant chemotherapy. Embodiments include processors configured to access a radiological image of a region of tissue demonstrating early stage NSCLC; segment a tumor represented in the radiological image; define a peritumoral region based on a morphological dilation of a boundary of the tumor; extract a radiomic signature that includes a set of tumoral radiomic features extracted from the tumoral region, and a set of peritumoral radiomic features extracted from the peritumoral region, based on a continuous time to event data; compute a radiomic score based on the radiomic signature; compute a probability of added benefit of adjuvant chemotherapy based on the radiomic score; and generate an NSCLC recurrence prognosis based on the radiomic score. Embodiments may display the radiomic score, or generate a personalized treatment plan based on the radiomic score.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: June 7, 2022
    Assignees: Case Western Reserve University, The Cleveland Clinic Foundation
    Inventors: Anant Madabhushi, Pranjal Vaidya, Vamsidhar Velcheti, Kaustav Bera
  • Patent number: 11055844
    Abstract: Embodiments access a digitized image of tissue demonstrating non-small cell lung cancer (NSCLC), the tissue including a plurality of cellular nuclei; segment the plurality of cellular nuclei represented in the digitized image; extract a set of nuclear radiomic features from the plurality of segmented cellular nuclei; generate at least one nuclear cell graph (CG) based on the plurality of segmented nuclei; compute a set of CG features based on the nuclear CG; provide the set of nuclear radiomic features and the set of CG features to a machine learning classifier; receive, from the machine learning classifier, a probability that the tissue will respond to immunotherapy, based, at least in part, on the set of nuclear radiomic features and the set of CG features; generate a classification of the tissue as a responder or non-responder based on the probability; and display the classification.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: July 6, 2021
    Assignees: Case Western Reserve University, The Cleveland Clinic Foundation
    Inventors: Anant Madabhushi, Xiangxue Wang, Cristian Barrera, Vamsidhar Velcheti
  • Patent number: 10956795
    Abstract: Embodiments predict early stage NSCLC recurrence, and include an image acquisition circuit configured to access an image of a region of tissue demonstrating early-stage NSCLC including a plurality of cellular nuclei; a nuclei detecting and segmentation circuit configured to detect a member of the plurality; and classify the member as a tumor infiltrating lymphocyte (TIL) nucleus or non-TIL nucleus; a spatial TIL feature circuit configured to extract spatial TIL features from the plurality, the spatial TIL features including a first subset of features based on the spatial arrangement of TIL nuclei, and a second subset of features based on the spatial relationship between TIL nuclei and non-TIL nuclei; and an NSCLC recurrence classification circuit configured to compute a probability that region will experience recurrence based on the spatial TIL features; and generate a classification of the region as likely or unlikely to experience recurrence based on the probability.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: March 23, 2021
    Assignees: Case Western Reserve University, The Cleveland Clinic Foundation
    Inventors: Anant Madabhushi, Xiangxue Wang, Vamsidhar Velcheti
  • Patent number: 10950351
    Abstract: Methods, apparatus, and other embodiments predict response to immunotherapy from computed tomography (CT) images of a region of tissue demonstrating non-small cell lung cancer (NSCLC). One example apparatus includes a set of circuits that includes an image acquisition circuit that accesses a CT image of a region of tissue demonstrating cancerous pathology, a tumoral definition circuit that generates a tumoral surface boundary that defines a tumoral volume, a peritumoral segmentation circuit that generates a peritumoral region based on the tumoral surface boundary, and that segments the peritumoral region into a plurality of annular bands, a radiomics circuit that extracts a set of discriminative features from the tumoral volume and at least one of the plurality of annular bands, and a classification circuit that classifies the ROI as a responder or a non-responder, based, at least in part, on the set of discriminative features.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: March 16, 2021
    Assignees: Case Western Reserve University, The Cleveland Clinic Foundation
    Inventors: Anant Madabhushi, Mahdi Orooji, Niha Beig, Vamsidhar Velcheti
  • Patent number: 10902256
    Abstract: Embodiments include controlling a processor to perform operations, the operations comprising: accessing a digitized image of a region of tissue demonstrating non-small cell lung cancer (NSCLC), detecting a member of a plurality of cellular nuclei represented in the image; classifying the member of the plurality of cellular nuclei as a tumor infiltrating lymphocyte (TIL) nucleus or non-TIL nucleus; extracting spatial TIL features from the plurality of cellular nuclei, including a first subset of features based on the spatial arrangement of TIL nuclei, and a second, different subset of features based on the spatial relationship between TIL nuclei and non-TIL nuclei; generating a set of graph interplay features based on the set of spatial TIL features; providing the set of graph interplay features to a machine learning classifier; receiving, from the machine learning classifier, a probability that the region of tissue will respond to immunotherapy, based, at least in part, on the set of graph interplay features;
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: January 26, 2021
    Assignee: Case Western Reserve University
    Inventors: Anant Madabhushi, Xiangxue Wang, Cristian Barrera, Vamsidhar Velcheti
  • Patent number: 10846367
    Abstract: Embodiments predict early stage NSCLC recurrence, and include processors configured to access a pathology image of a region of tissue demonstrating early stage NSCLC; extract a set of pathomic features from the pathology image; access a radiological image of the region of tissue; extract a set of radiomic features from the radiological image; generate a combined feature set that includes at least one member of the set of pathomic features, and at least one member of the set of radiomic features; compute a probability that the region of tissue will experience NSCLC recurrence based, at least in part, on the combined feature set; and classify the region of tissue as recurrent or non-recurrent based, at least in part, on the probability. Embodiments may display the classification, or generate a personalized treatment plan based on the classification.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: November 24, 2020
    Assignee: Case Western Reserve University University
    Inventors: Anant Madabhushi, Xiangxue Wang, Pranjal Vaidya, Vamsidhar Velcheti
  • Patent number: 10839513
    Abstract: Embodiments access a pre-immunotherapy image of tissue demonstrating NSCLC including a tumor and a peritumoral region; extract a first set of radiomic features from the image; provide the first set of radiomic features to a first machine learning classifier; receive a first probability from the first classifier that the tissue is hyperprogressor (HP) or non-responder (R); if the first probability that the tissue is within a threshold: generate a first classification of the ROT as HP or non-R based on the first probability; if the first probability is not within the threshold: extract a second set of radiomic features from the peritumoral region and provide the second set to a second machine learning classifier; receive a second probability from the second classifier that the tissue is HP or R; generate a second classification of the tissue as HP or R based on the second probability; and display the classification.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: November 17, 2020
    Assignee: Case Western Reserve University
    Inventors: Pranjal Vaidya, Kaustav Bera, Vamsidhar Velcheti, Anant Madabhushi
  • Patent number: 10575774
    Abstract: One embodiment include an image acquisition circuit that accesses a pre-treatment and a post-treatment image of a region of tissue demonstrating non-small cell lung cancer (NSCLC), a segmentation and registration circuit that annotates the tumor represented in the images, and that registers the pre-treatment image with the post-treatment image; a feature extraction circuit that selects a set of pre-treatment and a set of post-treatment radiomic features from the registered image; a delta radiomics circuit that generates a set of delta radiomic features by computing a difference between the set of post-treatment radiomic features and the set of pre-treatment radiomic features; and a classification circuit that generates a probability that the region of tissue will respond to immunotherapy based on the difference, and that classifies the region of tissue as a responder or non-responder. Embodiments may generate an immunotherapy treatment plan based, at least in part, on the classification.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: March 3, 2020
    Assignee: Case Western Reserve University
    Inventors: Anant Madabhushi, Yuanqi Xie, Vamsidhar Velcheti
  • Patent number: 10492723
    Abstract: Embodiments classify a region of tissue demonstrating non-small cell lung cancer using quantified vessel tortuosity (QVT). One example apparatus includes annotation circuitry configured to segment a lung region from surrounding anatomy in the region of tissue represented in a radiological image and segment a nodule from the lung region by defining a nodule boundary; vascular segmentation circuitry configured to generate a three dimensional (3D) segmented vasculature by segmenting a vessel associated with the nodule, and to identify a center line of the 3D segmented vasculature; QVT feature extraction circuitry configured to extract a set of QVT features from the radiological image; and classification circuitry configured to compute a probability that the region of tissue will respond to immunotherapy and generate a classification that the region of tissue is a responder or a non-responder based, at least in part, on the probability.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: December 3, 2019
    Assignee: Case Western Reserve University
    Inventors: Anant Madabhushi, Mehdi Alilou, Vamsidhar Velcheti
  • Publication number: 20190347789
    Abstract: Embodiments access a pre-immunotherapy image of tissue demonstrating NSCLC including a tumor and a peritumoral region; extract a first set of radiomic features from the image; provide the first set of radiomic features to a first machine learning classifier; receive a first probability from the first classifier that the tissue is hyperprogressor (HP) or non-responder (R); if the first probability that the tissue is within a threshold: generate a first classification of the ROT as HP or non-R based on the first probability; if the first probability is not within the threshold: extract a second set of radiomic features from the peritumoral region and provide the second set to a second machine learning classifier; receive a second probability from the second classifier that the tissue is HP or R; generate a second classification of the tissue as HP or R based on the second probability; and display the classification.
    Type: Application
    Filed: March 11, 2019
    Publication date: November 14, 2019
    Inventors: Pranjal Vaidya, Kaustav Bera, Vamsidhar Velcheti, Anant Madabhushi
  • Patent number: 10458895
    Abstract: Methods, apparatus, and other embodiments predict response to pemetrexed based chemotherapy. One example apparatus includes an image acquisition circuit that acquires a radiological image of a region of tissue demonstrating NSCLC that includes a region of interest (ROI) defining a tumoral volume, a peritumoral volume definition circuit that defines a peritumoral volume based on the boundary of the ROI and a distance, a feature extraction circuit that extracts a set of discriminative tumoral features from the tumoral volume, and a set of discriminative peritumoral features from the peritumoral volume, and a classification circuit that classifies the ROI as a responder or a non-responder using a machine learning classifier based, at least in part, on the set of discriminative tumoral features and the set of discriminative peritumoral features.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: October 29, 2019
    Assignee: Case Western Reserve University
    Inventors: Anant Madabhushi, Vamsidhar Velcheti, Mahdi Orooji, Sagar Rakshit, Mehdi Alilou, Niha Beig
  • Patent number: 10441215
    Abstract: One embodiment includes an image acquisition circuit that accesses a pre-treatment and a post-treatment image of a region of tissue demonstrating non-small cell lung cancer (NSCLC), a segmentation and registration circuit that annotates the tumor represented in the images, and that registers the pre-treatment image with the post-treatment image; a feature extraction circuit that selects a set of pre-treatment and a set of post-treatment quantitative vessel tortuosity (QVT) features from the registered image; a delta-QVT circuit that generates a set of delta-QVT features by computing a difference between the set of post-treatment QVT features and the set of pre-treatment QVT features; and a classification circuit that generates a probability that the region of tissue will respond to immunotherapy based on the difference, and that classifies the region of tissue as a responder or non-responder. Embodiments may generate an immunotherapy treatment plan based on the classification.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: October 15, 2019
    Assignee: Case Western Reserve University
    Inventors: Anant Madabhushi, Yuanqi Xie, Vamsidhar Velcheti
  • Patent number: 10441225
    Abstract: Embodiments include operations, apparatus, methods and other embodiments that access a baseline CT image of a region of tissue (ROT) demonstrating non-small cell lung cancer (NSCLC), segment a tumoral region represented in the baseline CT image; define a peritumoral region by dilating the tumoral boundary; extract a set of tumoral radiomic features from the tumoral region, a set of peritumoral radiomic features from the peritumoral region, and a set of clinico-pathologic features from the baseline CT image; provide the set of tumoral radiomic features, peritumoral radiomic features, and clinico-pathologic features to a machine learning classifier; receive, from the machine learning classifier, a time-to-recurrence post trimodality therapy (TMT) prediction, based on the set of tumoral radiomic features, peritumoral radiomic features, and clinico-pathologic features; generate a classification of the ROT as an MPR responder or MPR non-responder based, at least in part, on the time-to-recurrence post-TMT predicti
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: October 15, 2019
    Assignee: Case Western Reserve University
    Inventors: Anant Madabhushi, Mohammadhadi Khorrami, Vamsidhar Velcheti
  • Publication number: 20190254611
    Abstract: Embodiments include operations, apparatus, methods and other embodiments that access a baseline CT image of a region of tissue (ROT) demonstrating non-small cell lung cancer (NSCLC), segment a tumoral region represented in the baseline CT image; define a peritumoral region by dilating the tumoral boundary; extract a set of tumoral radiomic features from the tumoral region, a set of peritumoral radiomic features from the peritumoral region, and a set of clinico-pathologic features from the baseline CT image; provide the set of tumoral radiomic features, peritumoral radiomic features, and clinico-pathologic features to a machine learning classifier; receive, from the machine learning classifier, a time-to-recurrence post trimodality therapy (TMT) prediction, based on the set of tumoral radiomic features, peritumoral radiomic features, and clinico-pathologic features; generate a classification of the ROT as an MPR responder or MPR non-responder based, at least in part, on the time-to-recurrence post-TMT predicti
    Type: Application
    Filed: December 31, 2018
    Publication date: August 22, 2019
    Inventors: Anant Madabhushi, Mohammadhadi Khorrami, Vamsidhar Velcheti
  • Publication number: 20190258855
    Abstract: Embodiments include controlling a processor to perform operations, the operations comprising: accessing a digitized image of a region of tissue demonstrating non-small cell lung cancer (NSCLC), detecting a member of a plurality of cellular nuclei represented in the image; classifying the member of the plurality of cellular nuclei as a tumor infiltrating lymphocyte (TIL) nucleus or non-TIL nucleus; extracting spatial TIL features from the plurality of cellular nuclei, including a first subset of features based on the spatial arrangement of TIL nuclei, and a second, different subset of features based on the spatial relationship between TIL nuclei and non-TIL nuclei; generating a set of graph interplay features based on the set of spatial TIL features; providing the set of graph interplay features to a machine learning classifier; receiving, from the machine learning classifier, a probability that the region of tissue will respond to immunotherapy, based, at least in part, on the set of graph interplay features;
    Type: Application
    Filed: February 15, 2019
    Publication date: August 22, 2019
    Inventors: Anant Madabhushi, Xiangxue Wang, Cristian Barrera, Vamsidhar Velcheti
  • Publication number: 20190259154
    Abstract: Embodiments access a digitized image of tissue demonstrating non-small cell lung cancer (NSCLC), the tissue including a plurality of cellular nuclei; segment the plurality of cellular nuclei represented in the digitized image; extract a set of nuclear radiomic features from the plurality of segmented cellular nuclei; generate at least one nuclear cell graph (CG) based on the plurality of segmented nuclei; compute a set of CG features based on the nuclear CG; provide the set of nuclear radiomic features and the set of CG features to a machine learning classifier; receive, from the machine learning classifier, a probability that the tissue will respond to immunotherapy, based, at least in part, on the set of nuclear radiomic features and the set of CG features; generate a classification of the tissue as a responder or non-responder based on the probability; and display the classification.
    Type: Application
    Filed: February 21, 2019
    Publication date: August 22, 2019
    Inventors: Anant Madabhushi, Xiangxue Wang, Cristian Barrera, Vamsidhar Velcheti
  • Publication number: 20190259156
    Abstract: Embodiments include controlling a processor to perform operations, the operations comprising accessing a digitized image of a region of tissue (ROT) demonstrating cancerous pathology; extracting a set of radiomic features from the digitized image, where the set of radiomic features are positively correlated with programmed death-ligand 1 (PD-L1) expression; providing the set of radiomic features to a machine learning classifier; receiving, from the machine learning classifier, a probability that the region of tissue will experience cancer recurrence, where the machine learning classifier computes the probability based, at least in part, on the set of radiomic features; generating a classification of the region of tissue as likely to experience recurrence or non-recurrence based, at least in part, on the probability; and displaying the classification and at least one of the probability, the set of radiomic features, or the digitized image.
    Type: Application
    Filed: February 18, 2019
    Publication date: August 22, 2019
    Inventors: Anant Madabhushi, Pranjal Vaidya, Kaustav Bera, Prateek Prasanna, Vamsidhar Velcheti
  • Patent number: 10346975
    Abstract: Methods, apparatus, and other embodiments predict tumor infiltrating lymphocyte (TIL) density from pre-surgical computed tomography images of a region of tissue demonstrating non-small cell lung cancer (NSCLC). One example apparatus includes a set of circuits that includes an image acquisition circuit that accesses a radiological image of a region of tissue demonstrating cancerous pathology, where the radiological image has a plurality of pixels, and where the radiological image includes an annotated region of interest (ROI), a feature extraction circuit that extracts a set of radiomic features from the ROI, where the set of radiomic features includes at least two texture features and at least one shape feature, and a classification circuit that comprises a machine learning classifier that classifies the ROI as high tumor infiltrating lymphocyte (TIL) density, or low TIL density, based, at least in part, on the set of radiomic features.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: July 9, 2019
    Assignee: Case Western Reserve University
    Inventors: Anant Madabhushi, Vamsidhar Velcheti, Mahdi Orooji, Sagar Rakshit, Mehdi Alilou, Niha Beig