Patents by Inventor Vamsidhar Velcheti

Vamsidhar Velcheti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190159745
    Abstract: Embodiments generate an early stage NSCLC recurrence prognosis, and predict added benefit of adjuvant chemotherapy. Embodiments include processors configured to access a radiological image of a region of tissue demonstrating early stage NSCLC; segment a tumor represented in the radiological image; define a peritumoral region based on a morphological dilation of a boundary of the tumor; extract a radiomic signature that includes a set of tumoral radiomic features extracted from the tumoral region, and a set of peritumoral radiomic features extracted from the peritumoral region, based on a continuous time to event data; compute a radiomic score based on the radiomic signature; compute a probability of added benefit of adjuvant chemotherapy based on the radiomic score; and generate an NSCLC recurrence prognosis based on the radiomic score. Embodiments may display the radiomic score, or generate a personalized treatment plan based on the radiomic score.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 30, 2019
    Inventors: Anant Madabhushi, Pranjal Vaidya, Vamsidhar Velcheti, Kaustav Bera
  • Publication number: 20190156954
    Abstract: Methods, apparatus, and other embodiments predict response to immunotherapy from computed tomography (CT) images of a region of tissue demonstrating non-small cell lung cancer (NSCLC). One example apparatus includes a set of circuits that includes an image acquisition circuit that accesses a CT image of a region of tissue demonstrating cancerous pathology, a tumoral definition circuit that generates a tumoral surface boundary that defines a tumoral volume, a peritumoral segmentation circuit that generates a peritumoral region based on the tumoral surface boundary, and that segments the peritumoral region into a plurality of annular bands, a radiomics circuit that extracts a set of discriminative features from the tumoral volume and at least one of the plurality of annular bands, and a classification circuit that classifies the ROI as a responder or a non-responder, based, at least in part, on the set of discriminative features.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Inventors: Anant Madabhushi, Mahdi Orooji, Niha Beig, Vamsidhar Velcheti
  • Publication number: 20190087532
    Abstract: Embodiments predict early stage NSCLC recurrence, and include processors configured to access a pathology image of a region of tissue demonstrating early stage NSCLC; extract a set of pathomic features from the pathology image; access a radiological image of the region of tissue; extract a set of radiomic features from the radiological image; generate a combined feature set that includes at least one member of the set of pathomic features, and at least one member of the set of radiomic features; compute a probability that the region of tissue will experience NSCLC recurrence based, at least in part, on the combined feature set; and classify the region of tissue as recurrent or non-recurrent based, at least in part, on the probability. Embodiments may display the classification, or generate a personalized treatment plan based on the classification.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 21, 2019
    Inventors: Anant Madabhushi, Xiangxue Wang, Pranjal Vaidya, Vamsidhar Velcheti
  • Publication number: 20190087693
    Abstract: Embodiments predict early stage NSCLC recurrence, and include an image acquisition circuit configured to access an image of a region of tissue demonstrating early-stage NSCLC including a plurality of cellular nuclei; a nuclei detecting and segmentation circuit configured to detect a member of the plurality; and classify the member as a tumor infiltrating lymphocyte (TIL) nucleus or non-TIL nucleus; a spatial TIL feature circuit configured to extract spatial TIL features from the plurality, the spatial TIL features including a first subset of features based on the spatial arrangement of TIL nuclei, and a second subset of features based on the spatial relationship between TIL nuclei and non-TIL nuclei; and an NSCLC recurrence classification circuit configured to compute a probability that region will experience recurrence based on the spatial TIL features; and generate a classification of the region as likely or unlikely to experience recurrence based on the probability.
    Type: Application
    Filed: August 24, 2018
    Publication date: March 21, 2019
    Inventors: Anant Madabhushi, Xiangxue Wang, Vamsidhar Velcheti
  • Patent number: 10078895
    Abstract: Methods and apparatus predict non-small cell lung cancer (NSCLC) recurrence using radiomic features extracted from digitized hematoxylin and eosin (H&E) stained slides of a region of tissue demonstrating NSCLC. One example apparatus includes an image acquisition circuit that acquires an image of a region of tissue demonstrating NSCLC, a segmentation circuit that segments a cellular nucleus from the image, a feature extraction circuit that extracts a set of features from the image, a tumor infiltrating lymphocyte (TIL) identification circuit that classifies the segmented nucleus as a TIL or non-TIL, a graphing circuit that constructs a TIL graph and computes a set of TIL graph statistical features, and a classification circuit that computes a probability that the region will experience NSCLC recurrence. The classification circuit may compute a quantitative continuous image-based risk score based on the probability or the image. A treatment plan may be provided based on the risk score.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: September 18, 2018
    Assignee: Case Western Reserve University
    Inventors: Anant Madabhushi, Xiangxue Wang, Vamsidhar Velcheti, German Corredor Prada
  • Publication number: 20180242906
    Abstract: One embodiment includes an image acquisition circuit that accesses a pre-treatment and a post-treatment image of a region of tissue demonstrating non-small cell lung cancer (NSCLC), a segmentation and registration circuit that annotates the tumor represented in the images, and that registers the pre-treatment image with the post-treatment image; a feature extraction circuit that selects a set of pre-treatment and a set of post-treatment quantitative vessel tortuosity (QVT) features from the registered image; a delta-QVT circuit that generates a set of delta-QVT features by computing a difference between the set of post-treatment QVT features and the set of pre-treatment QVT features; and a classification circuit that generates a probability that the region of tissue will respond to immunotherapy based on the difference, and that classifies the region of tissue as a responder or non-responder. Embodiments may generate an immunotherapy treatment plan based on the classification.
    Type: Application
    Filed: February 9, 2018
    Publication date: August 30, 2018
    Inventors: Anant Madabhushi, Yuanqi Xie, Vamsidhar Velcheti
  • Publication number: 20180247410
    Abstract: One embodiment include an image acquisition circuit that accesses a pre-treatment and a post-treatment image of a region of tissue demonstrating non-small cell lung cancer (NSCLC), a segmentation and registration circuit that annotates the tumor represented in the images, and that registers the pre-treatment image with the post-treatment image; a feature extraction circuit that selects a set of pre-treatment and a set of post-treatment radiomic features from the registered image; a delta radiomics circuit that generates a set of delta radiomic features by computing a difference between the set of post-treatment radiomic features and the set of pre-treatment radiomic features; and a classification circuit that generates a probability that the region of tissue will respond to immunotherapy based on the difference, and that classifies the region of tissue as a responder or non-responder. Embodiments may generate an immunotherapy treatment plan based, at least in part, on the classification.
    Type: Application
    Filed: December 22, 2017
    Publication date: August 30, 2018
    Inventors: Anant Madabhushi, Yuanqi Xie, Vamsidhar Velcheti
  • Publication number: 20180242905
    Abstract: Embodiments classify a region of tissue demonstrating non-small cell lung cancer using quantified vessel tortuosity (QVT). One example apparatus includes annotation circuitry configured to segment a lung region from surrounding anatomy in the region of tissue represented in a radiological image and segment a nodule from the lung region by defining a nodule boundary; vascular segmentation circuitry configured to generate a three dimensional (3D) segmented vasculature by segmenting a vessel associated with the nodule, and to identify a center line of the 3D segmented vasculature; QVT feature extraction circuitry configured to extract a set of QVT features from the radiological image; and classification circuitry configured to compute a probability that the region of tissue will respond to immunotherapy and generate a classification that the region of tissue is a responder or a non-responder based, at least in part, on the probability.
    Type: Application
    Filed: January 30, 2018
    Publication date: August 30, 2018
    Inventors: Anant Madabhushi, Mehdi Alilou, Vamsidhar Velcheti
  • Patent number: 10049770
    Abstract: Methods, apparatus, and other embodiments associated with predicting non-small cell lung cancer (NSCLC) patient response to adjuvant chemotherapy therapy using radiomic features extracted from digitized hematoxylin and eosin (H&E) stained slides of a region of tissue demonstrating NSCLC. One example apparatus includes an image acquisition circuit that acquires an H&E image of a region of tissue demonstrating NSCLC pathology, a segmentation circuit that segments a region of interest (ROI) from the diagnostic radiological image, a feature extraction that extracts a set of discriminative features from the ROI, and a classification circuit that generates a probability that the ROI will experience NSCLC recurrence. The classification circuit may compute a quantitative continuous image-based risk score based on the probability or the image. A prognosis or treatment plan may be provided based on the quantitative continuous image-based risk score.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: August 14, 2018
    Assignee: Case Western Reserve University
    Inventors: Anant Madabhushi, Xiangxue Wang, Vamsidhar Velcheti
  • Publication number: 20170351939
    Abstract: Methods, apparatus, and other embodiments predict response to pemetrexed based chemotherapy. One example apparatus includes an image acquisition circuit that acquires a radiological image of a region of tissue demonstrating NSCLC that includes a region of interest (ROI) defining a tumoral volume, a peritumoral volume definition circuit that defines a peritumoral volume based on the boundary of the ROI and a distance, a feature extraction circuit that extracts a set of discriminative tumoral features from the tumoral volume, and a set of discriminative peritumoral features from the peritumoral volume, and a classification circuit that classifies the ROI as a responder or a non-responder using a machine learning classifier based, at least in part, on the set of discriminative tumoral features and the set of discriminative peritumoral features.
    Type: Application
    Filed: June 2, 2017
    Publication date: December 7, 2017
    Inventors: Anant Madabhushi, Vamsidhar Velcheti, Mahdi Orooji, Sagar Rakshit, Mehdi Alilou, Niha Beig
  • Publication number: 20170352157
    Abstract: Methods, apparatus, and other embodiments predict tumor infiltrating lymphocyte (TIL) density from pre-surgical computed tomography images of a region of tissue demonstrating non-small cell lung cancer (NSCLC). One example apparatus includes a set of circuits that includes an image acquisition circuit that accesses a radiological image of a region of tissue demonstrating cancerous pathology, where the radiological image has a plurality of pixels, and where the radiological image includes an annotated region of interest (ROI), a feature extraction circuit that extracts a set of radiomic features from the ROI, where the set of radiomic features includes at least two texture features and at least one shape feature, and a classification circuit that comprises a machine learning classifier that classifies the ROI as high tumor infiltrating lymphocyte (TIL) density, or low TIL density, based, at least in part, on the set of radiomic features.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 7, 2017
    Inventors: Anant Madabhushi, Vamsidhar Velcheti, Mahdi Orooji, Sagar Rakshit, Mehdi Alilou, Niha Beig
  • Publication number: 20170193175
    Abstract: Methods, apparatus, and other embodiments associated with predicting non-small cell lung cancer (NSCLC) patient response to adjuvant chemotherapy therapy using radiomic features extracted from digitized hematoxylin and eosin (H&E) stained slides of a region of tissue demonstrating NSCLC. One example apparatus includes an image acquisition circuit that acquires an H&E image of a region of tissue demonstrating NSCLC pathology, a segmentation circuit that segments a region of interest (ROI) from the diagnostic radiological image, a feature extraction that extracts a set of discriminative features from the ROI, and a classification circuit that generates a probability that the ROI will experience NSCLC recurrence. The classification circuit may compute a quantitative continuous image-based risk score based on the probability or the image. A prognosis or treatment plan may be provided based on the quantitative continuous image-based risk score.
    Type: Application
    Filed: December 23, 2016
    Publication date: July 6, 2017
    Inventors: Anant Madabhushi, Xiangxue Wang, Vamsidhar Velcheti
  • Publication number: 20170193657
    Abstract: Methods and apparatus predict non-small cell lung cancer (NSCLC) recurrence using radiomic features extracted from digitized hematoxylin and eosin (H&E) stained slides of a region of tissue demonstrating NSCLC. One example apparatus includes an image acquisition circuit that acquires an image of a region of tissue demonstrating NSCLC, a segmentation circuit that segments a cellular nucleus from the image, a feature extraction circuit that extracts a set of features from the image, a tumor infiltrating lymphocyte (TIL) identification circuit that classifies the segmented nucleus as a TIL or non-TIL, a graphing circuit that constructs a TIL graph and computes a set of TIL graph statistical features, and a classification circuit that computes a probability that the region will experience NSCLC recurrence. The classification circuit may compute a quantitative continuous image-based risk score based on the probability or the image. A treatment plan may be provided based on the risk score.
    Type: Application
    Filed: December 23, 2016
    Publication date: July 6, 2017
    Inventors: Anant Madabhushi, Xiangxue Wang, Vamsidhar Velcheti, German Corredor Prada