Patents by Inventor Vandana Krishnamurthy

Vandana Krishnamurthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11817317
    Abstract: Lithographic compositions for use as wet-removable silicon gap fill layers are provided. The method of using these compositions involves utilizing a silicon gap fill layer over topographic features on a substrate. The silicon gap fill layer can either be directly applied to the substrate, or it can be applied to any intermediate layer(s) that may be applied to the substrate. The preferred silicon gap fill layers are formed from spin-coatable, polymeric compositions with high silicon content, and these layers exhibit good gap fill and planarization performance and high oxygen etch resistance.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: November 14, 2023
    Assignee: Brewer Science, Inc.
    Inventors: Ming Luo, Yubao Wang, Kaumba Sakavuyi, Vandana Krishnamurthy
  • Publication number: 20210125829
    Abstract: Lithographic compositions for use as wet-removable silicon gap fill layers are provided. The method of using these compositions involves utilizing a silicon gap fill layer over topographic features on a substrate. The silicon gap fill layer can either be directly applied to the substrate, or it can be applied to any intermediate layer(s) that may be applied to the substrate. The preferred silicon gap fill layers are formed from spin-coatable, polymeric compositions with high silicon content, and these layers exhibit good gap fill and planarization performance and high oxygen etch resistance.
    Type: Application
    Filed: October 26, 2020
    Publication date: April 29, 2021
    Inventors: Ming Luo, Yubao Wang, Kaumba Sakavuyi, Vandana Krishnamurthy
  • Publication number: 20190385837
    Abstract: New lithographic compositions for use as EUV adhesion layers are provided. The present invention provides methods of fabricating microelectronics structures using those compositions as well as structures formed by those methods. The method involves utilizing an adhesion layer immediately below the photoresist layer. The adhesion layer can either be directly applied to the substrate, or it can be applied to any intermediate layer(s) that may be applied to the substrate, such as an alpha-carbon, spin-on carbon, spin-on silicon hardmask, metal hardmask, or deposited silicon layer. The preferred adhesion layers are formed from spin-coatable, polymeric compositions. The inventive method improves adhesion and reduces or eliminates pattern collapse issues.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 19, 2019
    Inventors: Andrea M. Chacko, Vandana Krishnamurthy, Yichen Liang, Hao Lee, Stephen Grannemann, Douglas J. Guerrero
  • Patent number: 9960038
    Abstract: Methods of forming microelectronic structure are provided. The methods comprise the formation of T-shaped structures using a controlled undercutting process, and the deposition of a selectively etchable composition into the undercut areas of the T-shaped structures. The T-shaped structures are subsequently removed to yield extremely small undercut-formed features that conform to the width and optionally the height of the undercut areas of the T-shaped structures. These methods can be combined with other conventional patterning methods to create structures having extremely small feature sizes regardless of the wavelength of light used for patterning.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: May 1, 2018
    Assignee: Brewer Science, Inc.
    Inventors: Carlton Ashley Washburn, James E. Lamb, III, Nickolas L. Brakensiek, Qin Lin, Yubao Wang, Vandana Krishnamurthy, Claudia Scott
  • Patent number: 9249013
    Abstract: Compositions for directed self-assembly patterning techniques are provided which avoid the need for separate anti-reflective coatings and brush neutral layers in the process. Methods for directed self-assembly are also provided in which a self-assembling material, such as a directed self-assembly block copolymer, can be applied directly to the silicon hardmask neutral layer and then self-assembled to form the desired pattern. Directed self-assembly patterned structures are also disclosed herein.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: February 2, 2016
    Assignee: Brewer Science Inc.
    Inventors: Yubao Wang, Mary Ann Hockey, Douglas J. Guerrero, Vandana Krishnamurthy, Robert C. Cox
  • Patent number: 9102129
    Abstract: The invention described herein is directed towards spin-on carbon materials comprising polyamic acid compositions and a crosslinker in a solvent system. The materials are useful in trilayer photolithography processes. Films made with the inventive compositions are not soluble in solvents commonly used in lithographic materials, such as, but not limited to PGME, PGMEA, and cyclohexanone. However, the films can be dissolved in developers commonly used in photolithography. In one embodiment, the films can be heated at high temperatures to improve the thermal stability for high temperature processing. Regardless of the embodiment, the material can be applied to a flat/planar or patterned surface. Advantageously, the material exhibits a wiggling resistance during pattern transfer to silicon substrate using fluorocarbon etch.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: August 11, 2015
    Assignee: Brewer Science Inc.
    Inventors: Vandana Krishnamurthy, Daniel M. Sullivan, Yubao Wang, Qin Lin, Sean Simmons
  • Patent number: 8968989
    Abstract: The present invention provides novel methods of fabricating microelectronics structures, and the resulting structures formed thereby, using EUV lithographic processes. The method involves utilizing an assist layer immediately below the photoresist layer. The assist layer can either be directly applied to the substrate, or it can be applied to any intermediate layer(s) that may be applied to the substrate. The preferred assist layers are formed from spin-coatable, polymeric compositions. The inventive method allows reduced critical dimensions to be achieved with improved dose-to-size ratios, while improving adhesion and reducing or eliminating pattern collapse issues.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: March 3, 2015
    Assignee: Brewer Science Inc.
    Inventors: Tantiboro Ouattara, Carlton Washburn, Vandana Krishnamurthy, Douglas Guerrero, Aline Collin
  • Publication number: 20140356593
    Abstract: The invention described herein is directed towards spin-on carbon materials comprising polyamic acid compositions and a crosslinker in a solvent system. The materials are useful in trilayer photolithography processes. Films made with the inventive compositions are not soluble in solvents commonly used in lithographic materials, such as, but not limited to PGME, PGMEA, and cyclohexanone. However, the films can be dissolved in developers commonly used in photolithography. In one embodiment, the films can be heated at high temperatures to improve the thermal stability for high temperature processing. Regardless of the embodiment, the material can be applied to a flat/planar or patterned surface. Advantageously, the material exhibits a wiggling resistance during pattern transfer to silicon substrate using fluorocarbon etch.
    Type: Application
    Filed: August 15, 2014
    Publication date: December 4, 2014
    Inventors: Vandana Krishnamurthy, Daniel M. Sullivan, Yubao Wang, Qin Lin, Sean Simmons
  • Patent number: 8895230
    Abstract: The invention described herein is directed towards spin-on carbon materials comprising polyamic acid compositions and a crosslinker in a solvent system. The materials are useful in trilayer photolithography processes. Films made with the inventive compositions are not soluble in solvents commonly used in lithographic materials, such as, but not limited to PGME, PGMEA, and cyclohexanone. However, the films can be dissolved in developers commonly used in photolithography. In one embodiment, the films can be heated at high temperatures to improve the thermal stability for high temperature processing. Regardless of the embodiment, the material can be applied to a flat/planar or patterned surface. Advantageously, the material exhibits a wiggling resistance during pattern transfer to silicon substrate using fluorocarbon etch.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: November 25, 2014
    Assignee: Brewer Science Inc.
    Inventors: Vandana Krishnamurthy, Daniel M. Sullivan, Yubao Wang, Qin Lin, Sean Simmons
  • Publication number: 20130273330
    Abstract: Compositions for directed self-assembly patterning techniques are provided which avoid the need for separate anti-reflective coatings and brush neutral layers in the process. Methods for directed self-assembly are also provided in which a self-assembling material, such as a directed self-assembly block copolymer, can be applied directly to the silicon hardmask neutral layer and then self-assembled to form the desired pattern. Directed self-assembly patterned structures are also disclosed herein.
    Type: Application
    Filed: April 15, 2013
    Publication date: October 17, 2013
    Applicant: Brewer Science Inc.
    Inventors: Yubao Wang, Mary Ann Hockey, Douglas J. Guerrero, Vandana Krishnamurthy, Robert C. Cox
  • Patent number: 8257910
    Abstract: The present invention provides methods of fabricating microelectronics structures and the resulting structures formed thereby using EUV lithographic processes. The method involves utilizing an underlayer immediately below the photoresist layer. The underlayer can either be directly applied to the substrate, or it can be applied to any intermediate layer(s) that may be applied to the substrate. The preferred underlayers are formed from spin-coatable, polymeric compositions. The inventive method allows reduced critical dimensions to be achieved while improving adhesion and reducing or eliminating pattern collapse issues.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: September 4, 2012
    Assignee: Brewer Science Inc.
    Inventors: Douglas J. Guerrero, Hao Xu, Vandana Krishnamurthy
  • Publication number: 20120164390
    Abstract: Methods of forming microelectronic structure are provided. The methods comprise the formation of T-shaped structures using a controlled undercutting process, and the deposition of a selectively etchable composition into the undercut areas of the T-shaped structures. The T-shaped structures are subsequently removed to yield extremely small undercut-formed features that conform to the width and optionally the height of the undercut areas of the T-shaped structures. These methods can be combined with other conventional patterning methods to create structures having extremely small feature sizes regardless of the wavelength of light used for patterning.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 28, 2012
    Applicant: BREWER SCIENCE INC.
    Inventors: Carlton Ashley Washburn, James E. Lamb, III, Nickolas L. Brakensiek, Qin Lin, Yubao Wang, Vandana Krishnamurthy, Claudia Scott
  • Patent number: 6962769
    Abstract: Anti-reflective compositions and methods of using those compositions to form circuits are provided. The compositions comprise a polymer dissolved or dispersed in a solvent system. In one embodiment, the compositions comprise less than about 0.3% by weight of a strong acid. In another embodiment, the weight ratio of strong acid to weak acid in the composition is from about 0:100 to about 25:75. Examples of preferred weak acid compounds include phenolic compounds (e.g., Bisphenol S, Bisphenol A, ?-cyano-4-hydroxycinnamic acid), carboxylic acids (e.g., acetic acid), phosphoric acid, and cyano compounds. The polymer and other ingredients are preferably physically mixed in a solvent system. The resulting compositions are spin bowl compatible (i.e., they do not crosslink prior to the bake stages of the microlithographic processes or during storage at room temperature).
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: November 8, 2005
    Assignee: Brewer Science Inc.
    Inventors: Xie Shao, Jim D. Meador, Mandar Bhave, Vandana Krishnamurthy, Kelly A. Nowak, Michelle Fowler, Shreeram V. Deshpande
  • Patent number: 6872506
    Abstract: Anti-reflective compositions and methods of using these compositions to form circuits are provided. The compositions comprise a polymer dissolved or dispersed in a solvent system. In a preferred embodiment, the polymers include a light-attenuating moiety having a structure selected from the group consisting of: where: each of X1 and Y is individually selected from the group consisting of electron withdrawing groups; R2 is selected from the group consisting of alkyls and aryls; and R3 is selected from the group consisting of hydrogen and alkyls. The resulting compositions are spin bowl compatible (i.e., they do not crosslink prior to the bake stages of the microlithographic processes or during storage at room temperature), are wet developable, and have superior optical properties.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: March 29, 2005
    Assignee: Brewer Science Inc.
    Inventors: Charles J. Neef, Vandana Krishnamurthy
  • Patent number: 6740469
    Abstract: Anti-reflective compositions and methods of using these compositions to form circuits are provided. The compositions comprise a polymer dissolved or dispersed in a solvent system. In a preferred embodiment, the polymers of the composition include recurring units having the formula where X is a light-attenuating moiety, M is a metal, and each R is individually selected from the group consisting of hydrogen, alkyls, aryls, alkoxys, and phenoxys. The resulting compositions are spin bowl compatible (i.e., they do not crosslink prior to the bake stages of the microlithographic processes or during storage at room temperature), are wet developable, and have superior optical properties.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: May 25, 2004
    Assignee: Brewer Science Inc.
    Inventors: Vandana Krishnamurthy, Charles J. Neef, Juliet A. M. Snook
  • Publication number: 20040058275
    Abstract: Anti-reflective compositions and methods of using these compositions to form circuits are provided. The compositions comprise a polymer dissolved or dispersed in a solvent system.
    Type: Application
    Filed: June 23, 2003
    Publication date: March 25, 2004
    Applicant: Brewer Science, Inc.
    Inventors: Charles J. Neef, Vandana Krishnamurthy
  • Publication number: 20040048196
    Abstract: Anti-reflective compositions and methods of using those compositions to form circuits are provided. The compositions comprise a polymer dissolved or dispersed in a solvent system. In one embodiment, the compositions comprise less than about 0.3% by weight of a strong acid. In another embodiment, the weight ratio of strong acid to weak acid in the composition is from about 0:100 to about 25:75. Examples of preferred weak acid compounds include phenolic compounds (e.g., Bisphenol S, Bisphenol A, &agr;-cyano-4-hydroxycinnamic acid), carboxylic acids (e.g., acetic acid), phosphoric acid, and cyano compounds. The polymer and other ingredients are preferably physically mixed in a solvent system. The resulting compositions are spin bowl compatible (i.e., they do not crosslink prior to the bake stages of the microlithographic processes or during storage at room temperature).
    Type: Application
    Filed: September 11, 2003
    Publication date: March 11, 2004
    Inventors: Xie Shao, Jim D. Meador, Mandar Bhave, Vandana Krishnamurthy, Kelly A. Nowak, Michelle Fowler, Shreeram V. Deshpande
  • Publication number: 20030235786
    Abstract: Anti-reflective compositions and methods of using these compositions to form circuits are provided. The compositions comprise a polymer dissolved or dispersed in a solvent system.
    Type: Application
    Filed: June 25, 2002
    Publication date: December 25, 2003
    Applicant: BREWER SCIENCE, INC.
    Inventors: Vandana Krishnamurthy, Charles J. Neef, Juliet A.M. Snook
  • Patent number: 5919599
    Abstract: Anti-reflective coating compositions having improved etch rate, inter alia, are prepared from certain high molecular weight polymers and copolymers, particularly glycidyl methacrylate with grafted dyes.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: July 6, 1999
    Assignee: Brewer Science, Inc.
    Inventors: Jim Meador, Douglas J. Guerrero, Xie Shao, Vandana Krishnamurthy
  • Patent number: RE46841
    Abstract: The invention described herein is directed towards spin-on carbon materials comprising polyamic acid compositions and a crosslinker in a solvent system. The materials are useful in trilayer photolithography processes. Films made with the inventive compositions are not soluble in solvents commonly used in lithographic materials, such as, but not limited to PGME, PGMEA, and cyclohexanone. However, the films can be dissolved in developers commonly used in photolithography. In one embodiment, the films can be heated at high temperatures to improve the thermal stability for high temperature processing. Regardless of the embodiment, the material can be applied to a flat/planar or patterned surface. Advantageously, the material exhibits a wiggling resistance during pattern transfer to silicon substrate using fluorocarbon etch.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: May 15, 2018
    Assignee: Brewer Science, Inc.
    Inventors: Vandana Krishnamurthy, Daniel M. Sullivan, Yubao Wang, Qin Lin, Sean Simmons