Patents by Inventor Veeraraghavan S. Basker

Veeraraghavan S. Basker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10998230
    Abstract: A method of forming an active device having self-aligned source/drain contacts and gate contacts, including, forming an active area on a substrate, where the active area includes a device channel; forming two or more gate structures on the device channel; forming a plurality of source/drains on the active area adjacent to the two or more gate structures and device channel; forming a protective layer on the surfaces of the two or more gate structures, plurality of source/drains, and active layer; forming an interlayer dielectric layer on the protective layer; removing a portion of the interlayer dielectric and protective layer to form openings, where each opening exposes a portion of one of the plurality of source/drains; forming a source/drain contact liner in at least one of the plurality of openings; and forming a source/drain contact fill on the source/drain contact liner.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: May 4, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Theodorus E. Standaert, Junli Wang
  • Patent number: 10998242
    Abstract: A complementary metal-oxide-semiconductor field-effect transistor (CMOS) device includes a first source/drain (S/D) region and a second S/D region different from the first S/D region. A first epitaxy film formed of a first semiconductor material is on the first S/D region. A second epitaxy film formed of a second semiconductor material is on the second S/D region. The CMOS device further includes first and second S/D contact stacks. The first S/D contact stack includes a first contact trench liner having a first inner side wall extending from a first base portion to an upper surface of the first S/D contact stack. The second S/D contact stack includes a second contact trench liner having a second inner side wall extending from a second base portion to an upper surface of the second S/D contact stack. The first inner sidewall directly contacts the second inner sidewall.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: May 4, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Theodoras E. Standaert, Junli Wang
  • Patent number: 10991796
    Abstract: A dielectric fill layer within source/drain metallization trenches limits the depth of an inlaid metallization layer over isolation regions of a semiconductor device. The modified geometry decreases parasitic capacitance as well as the propensity for electrical short circuits between the source/drain metallization and adjacent conductive structures, which improves device reliability and performance.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: April 27, 2021
    Assignee: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Lin Hu, Veeraraghavan S. Basker, Brian J. Greene, Kai Zhao, Daniel Jaeger, Keith Tabakman, Christopher Nassar
  • Patent number: 10971601
    Abstract: Replacement metal gate structures with improved chamfered workfunction metal and self-aligned contact and methods of manufacture are provided. The method includes forming a replacement metal gate structure in a dielectric material. The replacement metal gate structure is formed with a lower spacer and an upper spacer above the lower spacer. The upper spacer having material is different than material of the lower spacer. The method further includes forming a self-aligned contact adjacent to the replacement metal gate structure by patterning an opening within the dielectric material and filling the opening with contact material. The upper spacer prevents shorting with the contact material.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: April 6, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Theodorus E. Standaert, Junli Wang
  • Patent number: 10957761
    Abstract: Self-limiting cavities are formed within a crystalline semiconductor substrate and beneath a stack of semiconductor layers used to form a nanosheet transistor device. Inner ends of the cavities merge beneath the stack while the outer ends thereof adjoin isolation regions within the substrate. The cavities are filled with electrically insulating material to provide bottom device isolation. Source/drain regions are grown in vertical trenches extending through the stack of semiconductor layers following formation of dielectric inner spacers. The bottom ends of the trenches adjoin the electrically insulating material within the cavities.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: March 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Chun-chen Yeh, Alexander Reznicek, Veeraraghavan S. Basker, Junli Wang
  • Publication number: 20210074809
    Abstract: A method of forming a nanosheet transistor device is provided. The method includes forming a segment stack of alternating intermediate sacrificial segments and nanosheet segments on a bottom sacrificial segment, wherein the segment stack is on a mesa and a nanosheet template in on the segment stack. The method further includes removing the bottom sacrificial layer to form a conduit, and forming a fill layer in the conduit and encapsulating at least a portion of the segment stack.
    Type: Application
    Filed: September 11, 2019
    Publication date: March 11, 2021
    Inventors: Ruilong Xie, Veeraraghavan S. Basker, Andrew M. Greene, Pietro Montanini
  • Patent number: 10930754
    Abstract: Replacement metal gate structures with improved chamfered workfunction metal and self-aligned contact and methods of manufacture are provided. The method includes forming a replacement metal gate structure in a dielectric material. The replacement metal gate structure is formed with a lower spacer and an upper spacer above the lower spacer. The upper spacer having material is different than material of the lower spacer. The method further includes forming a self-aligned contact adjacent to the replacement metal gate structure by patterning an opening within the dielectric material and filling the opening with contact material. The upper spacer prevents shorting with the contact material.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: February 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Theodorus E. Standaert, Junli Wang
  • Publication number: 20210043728
    Abstract: Semiconductor devices and methods of forming the same include recessing sacrificial layers in a stack of alternating sacrificial layers and channel layers using a first etch to form curved recesses at sidewalls of each sacrificial layer in the stack, with tails of sacrificial material being present at a top and bottom of each curved recess. Dielectric plugs are formed that each partially fill a respective curved recess, leaving exposed at least a portion of each tail of sacrificial material. The tails of sacrificial material are etched back using a second etch to expand the recesses. Inner spacers are formed in the expanded recesses.
    Type: Application
    Filed: August 7, 2019
    Publication date: February 11, 2021
    Inventors: Andrew M. Greene, Yao Yao, Ruilong Xie, Veeraraghavan S. Basker
  • Patent number: 10916471
    Abstract: A method for fabricating a semiconductor device includes depositing a sacrificial liner in self-aligned contact openings in first and second regions. The openings are filled with a sacrificial material. The second region is blocked with a first mask to remove the sacrificial material from the first region. The first mask is removed from the second region, and the sacrificial liner is removed from the first region. A first liner is formed in the openings of the first region, and first contacts are formed in the first region on the first liner. The first region is blocked with a second mask to remove the sacrificial material from the second region. The second mask is removed from the first region, and the sacrificial liner is removed from the second region. A second liner is formed in the openings of the second region, and second contacts are formed in the second region.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: February 9, 2021
    Inventors: Praneet Adusumilli, Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 10916660
    Abstract: A method of forming a substrate contact in a vertical transistor device includes patterning a sacrificial layer to form an opening in the sacrificial layer, the sacrificial layer disposed on hardmask arranged on a substrate, and the substrate including a bulk semiconductor layer, a buried oxide layer arranged on the bulk semiconductor layer, and a semiconductor layer arranged on the buried oxide layer; forming oxide spacers on sidewalls of the opening in the sacrificial layer; using the oxide spacers as a pattern to etch a trench through the substrate, the trench stopping at a region within the bulk semiconductor layer; and depositing a conductive material in the trench to form the substrate contact.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: February 9, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Theodorus E. Standaert, Junli Wang
  • Publication number: 20210028297
    Abstract: A method for manufacturing a semiconductor device includes forming a plurality of first semiconductor layers alternately stacked with a plurality of second semiconductor layers on a semiconductor substrate, and laterally recessing the plurality of first semiconductor layers with respect to the plurality of second semiconductor layers to form a plurality of vacant areas on lateral sides of the plurality of first semiconductor layers. In the method, a plurality of first inner spacers are formed on the lateral sides of the plurality of first semiconductor layers in respective ones of the plurality of vacant areas, and a plurality of second inner spacers are formed on sides of the plurality of first inner spacers in the respective ones of the plurality of vacant areas. The method also includes laterally recessing the plurality of second semiconductor layers, and growing a plurality of source/drain regions from the plurality of second semiconductor layers.
    Type: Application
    Filed: July 22, 2019
    Publication date: January 28, 2021
    Inventors: Yao Yao, Ruilong Xie, Andrew Greene, Veeraraghavan S. Basker
  • Patent number: 10903338
    Abstract: A vertical transistor includes a first source/drain region and a second source/drain region vertically disposed relative to the first source/drain region and coupled to the first source/drain region by a fin. A gate dielectric is formed on the fin, and a gate conductor is formed on the gate dielectric in a region of the fin. A shaped spacer is configured to cover a lower portion and sides of the second source/drain region to reduce parasitic capacitance between the gate conductor and the second source/drain region.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: January 26, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Junli Wang, Kangguo Cheng, Theodorus E. Standaert, Veeraraghavan S. Basker
  • Patent number: 10896976
    Abstract: A shallow trench isolation layer is formed on a structure comprising semiconductor fins. Portions of the fins are recessed to a level below the shallow trench isolation layer. Epitaxial stressor regions are then formed on the recessed fin areas. A bottom portion of the epitaxial stressor regions are contained by the shallow trench isolation layer, which delays formation of the diamond shape as the epitaxial region is grown. Once the epitaxial stressor regions exceed the level of the shallow trench isolation layer, the diamond shape starts to form. The result of delaying the start of the diamond growth pattern is that the epitaxial regions are narrower for a given fin height. This allows for taller fins, which provide more current handling capacity, while the narrower epitaxial stressor regions enable a smaller fin pitch, allowing for increased circuit density.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: January 19, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Ali Khakifirooz, Henry K. Utomo, Reinaldo Ariel Vega
  • Patent number: 10892181
    Abstract: Integrated chips include a semiconductor fin that has a first active region and a second active region that are electrically separated by an oxide region that completely penetrates the semiconductor fin. A first semiconductor device is formed on the first active region. A second semiconductor device formed on the second active region.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: January 12, 2021
    Assignee: International Business Machines Corporation
    Inventors: Huimei Zhou, Gen Tsutsui, Veeraraghavan S. Basker, Andrew M. Greene, Dechao Guo, Huiming Bu, Reinaldo Vega
  • Patent number: 10886363
    Abstract: The disclosure is directed to semiconductor structures and, more particularly, to Metal-Insulator-Metal (MIM) capacitor structures and methods of manufacture. The method includes: forming at least one gate structure; removing material from the at least one gate structure to form a trench; depositing capacitor material within the trench and at an edge or outside of the trench; and forming a first contact in contact with a first conductive material of the capacitor material and a second contact in contact with a second conductive material of the capacitor material.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: January 5, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Theodoras E. Standaert, Junli Wang
  • Publication number: 20200411376
    Abstract: 2D self-aligned contact structures (both gate contact and source/drain contact) are provided that can improve the process control and push further scaling. The 2D self-aligned contact structures can enable tighter process control which can lead to further device scaling. In accordance with the present application, the gate contact structure is confined in one direction by a sacrificial spacer structure that is present in a dielectric material layer, and in another direction by an edge of a metallization structure that is located above the gate contact structure.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Junli Wang, Veeraraghavan S. Basker, Chun-Chen Yeh, Alexander Reznicek
  • Publication number: 20200381296
    Abstract: A method includes applying a first dielectric material onto a semiconductor substrate to form a first dielectric layer on the semiconductor substrate, creating a plurality of trenches in the dielectric layer, depositing a sacrificial material within the trenches of the dielectric layer, removing the sacrificial material from at least a first segment of a first trench of the trenches, depositing a second dielectric fill material into the first segment of the first trench where the sacrificial material was removed, removing the sacrificial material from at least some of the remaining trenches and depositing a metallic material within the first trench to define at least first and second lines in the first trench and form a metallic interconnect structure.
    Type: Application
    Filed: May 31, 2019
    Publication date: December 3, 2020
    Inventors: Su Chen Fan, Ruilong Xie, Andrew Greene, Veeraraghavan S. Basker
  • Patent number: 10854733
    Abstract: A semiconductor device that includes at least one fin structure and a gate structure present on a channel portion of the fin structure. An epitaxial semiconductor material is present on at least one of a source region portion and a drain region portion on the fin structure. The epitaxial semiconductor material includes a first portion having a substantially conformal thickness on a lower portion of the fin structure sidewall and a second portion having a substantially diamond shape that is present on an upper surface of the source portion and drain portion of the fin structure. A spacer present on first portion of the epitaxial semiconductor material.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: December 1, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 10840345
    Abstract: A technique relates to a semiconductor device. A source or drain (S/D) contact liner is formed on one or more S/D regions. Annealing is performed to form a silicide layer around the one or more S/D regions, the silicide layer being formed at an interface between the S/D contact liner and the S/D regions. A block layer is formed into a pattern over the one or more S/D regions, such that a portion of the S/D contact liner is protected by the block layer. Unprotected portions of the S/D contact liner are removed, such that the S/D contact liner protected by the block layer remains over the one or more S/D regions. The block layer and S/D contacts are formed on the S/D contact liner over the one or more S/D regions.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: November 17, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Andrew Greene, Dechao Guo, Tenko Yamashita, Veeraraghavan S. Basker, Robert Robison, Ardasheir Rahman
  • Patent number: 10840360
    Abstract: A nanosheet transistor device having reduced access resistance is fabricated by recessing channel nanosheets and replacing the channel material with epitaxially grown doped extension regions. Sacrificial semiconductor layers between the channel nanosheets are selectively removed without damaging source/drain regions epitaxially grown on the extension regions. The sacrificial semiconductor layers are replaced by gate dielectric and gate metal layers.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: November 17, 2020
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Shogo Mochizuki, Alexander Reznicek