Patents by Inventor Venkat Selvamanickam

Venkat Selvamanickam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10068688
    Abstract: A composition for a plurality of configurations of a high-temperature superconductor tape including a superconducting film disposed on a compliant film or sandwiched or captured between at least one pair of compliant film layers.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: September 4, 2018
    Assignee: University of Houston System
    Inventor: Venkat Selvamanickam
  • Publication number: 20180151792
    Abstract: An ultra-thin film superconducting tape and method for fabricating same is disclosed. Embodiments are directed to a superconducting tape being fabricated by processes which include removing a portion of the superconducting tape's substrate subsequent the substrate's initial formation, whereby a thickness of the superconducting tape is reduced to 15-80 ?m.
    Type: Application
    Filed: May 11, 2016
    Publication date: May 31, 2018
    Inventor: Venkat Selvamanickam
  • Publication number: 20180130575
    Abstract: An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 10, 2018
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Publication number: 20180061542
    Abstract: A superconductor tape may be fabricated via Metal Organic Chemical Vapor Deposition (MOCVD) to achieve peel strengths greater than approximately 4.5 N/cm. The superconductor tape may be fabricated via MOCVD with a REBCO composition that includes the elements Samarium (Sm)-Barium(Ba)-Copper(Cu)-Oxygen(O). Varying levels of Copper (Cu) content can achieve peel strengths ranging between approximately 4.5 N/cm to approximately 8.0 N/cm.
    Type: Application
    Filed: March 17, 2016
    Publication date: March 1, 2018
    Applicant: The University of Houston System
    Inventor: Venkat Selvamanickam
  • Patent number: 9892827
    Abstract: An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: February 13, 2018
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Publication number: 20180033524
    Abstract: A configuration and a method of constructing a high-temperature superconductor tape including a plurality superconducting filaments sandwiched between a substrate and an overlayer comprising compliant material extending to the substrate through gaps between each superconducting filament thereby isolating each superconducting filament.
    Type: Application
    Filed: October 2, 2017
    Publication date: February 1, 2018
    Inventor: Venkat Selvamanickam
  • Patent number: 9786415
    Abstract: A configuration and a method of constructing a high-temperature superconductor tape including a plurality superconducting filaments sandwiched between a substrate and an overlayer, and having a compliant material extending between the substrate and the overlayer and isolating each superconducting filament.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: October 10, 2017
    Assignee: University of Houston System
    Inventor: Venkat Selvamanickam
  • Publication number: 20170194078
    Abstract: A method and composition for doped HTS tapes having directional flux pinning and critical current.
    Type: Application
    Filed: December 20, 2016
    Publication date: July 6, 2017
    Applicants: University of Houston System, SuperPower, Inc.
    Inventors: Venkat Selvamanickam, Yimin Chen
  • Publication number: 20160240285
    Abstract: An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
    Type: Application
    Filed: April 26, 2016
    Publication date: August 18, 2016
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Publication number: 20160172080
    Abstract: A REBCO superconductor tape that can achieve a lift factor greater than or equal to approximately 3.0 or 4.0 in an approximately 3 T magnetic field applied perpendicular to a REBCO tape at approximately 30 K. In an embodiment, the REBCO superconductor tape can include a critical current density less than or equal to approximately 4.2 MA/cm2 at 77 K in the absence of an external magnetic field. In another embodiment, the REBCO superconductor tape can include a critical current density greater than or equal to approximately 12 MA/cm2 at approximately 30 K in a magnetic field of approximately 3 T having an orientation parallel to a c-axis.
    Type: Application
    Filed: April 1, 2014
    Publication date: June 16, 2016
    Applicant: The University of Houston System
    Inventor: Venkat Selvamanickam
  • Publication number: 20160155542
    Abstract: A composition for a plurality of configurations of a high-temperature superconductor tape including a superconducting film disposed on a compliant film or sandwiched or captured between at least one pair of compliant film layers.
    Type: Application
    Filed: July 3, 2013
    Publication date: June 2, 2016
    Inventor: Venkat Selvamanickam
  • Publication number: 20160111188
    Abstract: A configuration and a method of constructing a high-temperature superconductor tape including a plurality superconducting filaments sandwiched between a substrate and an overlayer, and having a compliant material extending between the substrate and the overlayer and isolating each superconducting filament.
    Type: Application
    Filed: July 3, 2013
    Publication date: April 21, 2016
    Applicant: University of Houston System
    Inventor: Venkat Selvamanickam
  • Publication number: 20150357088
    Abstract: Disclosed is a superconducting article comprising a silver overlayer consisting of no more than about 20% of grains over about 1 ?m, having a minimum Vickers micro-hardness value of about 100, and a porosity of less than about 1%. A method of manufacturing a superconducting tape is disclosed as comprising, deposition of silver, oxygenation at about 400° C. for about 30 minutes, slitting, deposition of silver at a temperature of less than about 250° C., and application of copper.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 10, 2015
    Inventor: Venkat Selvamanickam
  • Publication number: 20150357090
    Abstract: An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
    Type: Application
    Filed: March 13, 2014
    Publication date: December 10, 2015
    Applicant: The University of Houston System
    Inventors: Goran Majkic, Venkat Selvamanickam
  • Patent number: 8926868
    Abstract: A superconducting article comprises a substrate, a buffer layer overlying the substrate, and a high-temperature superconducting (HTS) layer overlying the buffer layer. The HTS layer includes a plurality of nanorods. A method of forming a superconducting article comprises providing a substrate, depositing a buffer layer overlying the substrate; forming a nanodot array overlying the buffer layer; depositing an array of nanorods nucleated on the nanodot array; and depositing a high-temperature superconducting (HTS) layer around the array of nanorods and overlying the buffer layer.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: January 6, 2015
    Assignees: University of Houston System, Superpower, Inc.
    Inventors: Venkat Selvamanickam, Goran Majkic, Maxim Martchevskii
  • Patent number: 8809237
    Abstract: A method of forming a superconducting article includes providing a substrate tape, forming a superconducting layer overlying the substrate tape, and depositing a capping layer overlying the superconducting layer. The capping layer includes a noble metal and has a thickness not greater than about 1.0 micron. The method further includes electrodepositing a stabilizer layer overlying the capping layer using a solution that is non-reactive to the superconducting layer. The superconducting layer has an as-formed critical current IC(AF) and a post-stabilized critical current IC(PS). The IC(PS) is at least about 95% of the IC(AF).
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: August 19, 2014
    Assignee: SuperPower, Inc.
    Inventors: Raghu N. Bhattacharya, Xun Zhang, Venkat Selvamanickam
  • Patent number: 8716188
    Abstract: A superconducting article includes first and second stacked conductor segments. The first stacked conductor segment includes first and second superconductive segments and has a nominal thickness tn1. The second stacked conductor segment includes third and forth superconductive segments and has a nominal thickness tn2. The superconducting article further includes a joint region comprising a first splice connecting the first and third superconductive segments together and a second splice connecting the second and forth superconductive segments together. The first splice is adjacent to and bridged portions of the first and third superconductive segments along at least a portion of the joint region, and the second splice is adjacent to and bridged portions of the second and forth superconductive segments along at least a portion of the joint region. The joint region has a thickness tjr, wherein tjr is not greater than at least one of 1.8tn1 and 1.8tn2.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: May 6, 2014
    Assignee: SuperPower, Inc.
    Inventors: Yi-Yuan Xie, Kenneth P. Lenseth, Justin Waterman, Venkat Selvamanickam
  • Patent number: 8682406
    Abstract: A high temperature superconductor structure including: a substrate on which at least one buffer layer is deposited, a superconductor layer on the buffer layer, the superconducting layer composed of superconductor material that forms at least two substantially parallel superconductor filaments that continuously extend along the length of the substrate wherein at least two superconductor filaments are separated from each other by at least one insulating strip wherein the insulating strip continuously extends along the length of the substrate and is composed of insulating material with a resistivity greater than about 1 m?cm. Also disclosed are methods of producing high temperature superconductors.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: March 25, 2014
    Assignees: University of Houston System, Superpower, Inc.
    Inventors: Venkat Selvamanickam, Senthil Sambandam
  • Publication number: 20130331272
    Abstract: A method and composition for doped HTS tapes having directional flux pinning and critical current.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 12, 2013
    Inventors: Venkat Selvamanickam, Yimin Chen
  • Patent number: 8512798
    Abstract: The present invention is a high-throughput, ultraviolet (UV) assisted metalorganic chemical vapor deposition (MOCVD) system for the manufacture of HTS-coated tapes. The UV-assisted MOCVD system of the present invention includes a UV source that irradiates the deposition zone and improves the thin film growth rate. The MOCVD system further enhances the excitation of the precursor vapors and utilizes an atmosphere of monatomic oxygen (O) rather than the more conventional diatomic oxygen (O2) in order to optimize reaction kinetics and thereby increase the thin film growth rate. In an alternate embodiment, a microwave plasma injector is substituted for the UV source.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: August 20, 2013
    Assignee: SuperPower, Inc.
    Inventors: Venkat Selvamanickam, Hee-Gyoun Lee