Patents by Inventor Vishnu K. Agarwal

Vishnu K. Agarwal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040056295
    Abstract: Structurally-stable, tall capacitors having unique three-dimensional architectures for semiconductor devices are disclosed. The capacitors include monolithically-fabricated upright microstructures, i.e., those having large height/width (H/W) ratios, which are mechanical reinforcement against shear forces and the like, by a brace layer that transversely extends between lateral sides of at least two of the free-standing microstructures. The brace layer is formed as a microbridge type structure spanning between the upper ends of the two or more microstructures.
    Type: Application
    Filed: September 22, 2003
    Publication date: March 25, 2004
    Inventors: Vishnu K. Agarwal, Gurtej Sandhu
  • Publication number: 20040042751
    Abstract: A waveguide and resonator are formed on a lower cladding of a thermo optic device, each having a formation height that is substantially equal. Thereafter, the formation height of the waveguide is attenuated. In this manner, the aspect ratio as between the waveguide and resonator in an area where the waveguide and resonator front or face one another decreases (in comparison to the prior art) thereby restoring the synchronicity between the waveguide and the grating and allowing higher bandwidth configurations to be used. The waveguide attenuation is achieved by photomasking and etching the waveguide after the resonator and waveguide are formed. In one embodiment the photomasking and etching is performed after deposition of the upper cladding. In another, it is performed before the deposition. Thermo optic devices, thermo optic packages and fiber optic systems having these waveguides are also taught.
    Type: Application
    Filed: August 29, 2002
    Publication date: March 4, 2004
    Inventors: Guy T. Blalock, Howard E. Rhodes, Vishnu K. Agarwal, Gurtej Singh Sandhu, James S. Foresi, Jean-Francois Viens, Dale G. Fried
  • Publication number: 20040029490
    Abstract: Planarizing machines, planarizing pads, and methods for planarizing or endpointing mechanical and/or chemical-mechanical planarization of microelectronic substrates. One particular embodiment is a planarizing machine that controls the movement of a planarizing pad along a pad travel path to provide optical analysis of a substrate assembly during a planarizing cycle. The planarizing machine can include a table having an optical opening at an illumination site in a planarizing zone and a light source aligned with the illumination site to direct a light beam through the optical opening in the table. The planarizing machine can further include a planarizing pad and a pad advancing mechanism. The planarizing pad has a planarizing medium and at least one optically transmissive window along the pad travel path. The pad advancing mechanism has an actuator system coupled to the pad and a position monitor coupled to the actuator system.
    Type: Application
    Filed: July 21, 2003
    Publication date: February 12, 2004
    Inventor: Vishnu K. Agarwal
  • Patent number: 6682972
    Abstract: In one aspect, the invention includes a method of forming a material comprising tungsten and nitrogen, comprising: a) providing a substrate; b) depositing a layer comprising tungsten and nitrogen over the substrate; and c) in a separate step from the depositing, exposing the layer comprising tungsten and nitrogen to a nitrogen-containing plasma. In another aspect, the invention includes a method of forming a capacitor, comprising: a) forming a first electrical node; b) forming a dielectric layer over the first electrical node; c) forming a second electrical node; and d) providing a layer comprising tungsten and nitrogen between the dielectric layer and one of the electrical nodes, the providing comprising; i) depositing a layer comprising tungsten and nitrogen; and ii) in a separate step from the depositing, exposing the layer comprising tungsten and nitrogen to a nitrogen-containing plasma.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: January 27, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, Gurtej S. Sandhu
  • Publication number: 20040012043
    Abstract: Disclosed herein are various novel dielectric stack combinations that may be used in integrated circuit devices, and various methods of making same. In one illustrative embodiment, a capacitor is provided which is comprised of a first conductive layer, a first dielectric layer formed above the first conductive layer, the first dielectric layer comprised of a material selected from the group consisting of hafnium silicate, zirconium silicate and aluminum silicate, a second dielectric layer formed above the first dielectric layer, the second dielectric layer comprised of a material selected from the group consisting of hafnium oxide, zirconium oxide and aluminum oxide, and a second conductive layer formed above the second dielectric layer.
    Type: Application
    Filed: July 17, 2002
    Publication date: January 22, 2004
    Inventors: F. Daniel Gealy, Vishnu K. Agarwal
  • Patent number: 6677636
    Abstract: An intermediate metal plug is used to raise the platform to which contact is to be made. In the illustrated process, a partial bit line plug is formed adjacent a stacked capacitor, and an interlevel dielectric formed over the capacitor. The bit line contact is completed by extending a via from the bit line, formed above the interlevel dielectric, down to the level of the intermediate plug, and the via is filled with metal. The height of the via to be filled is thus reduced by the height of the intermediate plug. In one embodiment, the intermediate plug is slightly shorter than an adjacent container-shaped capacitor. In another embodiment, the intermediate plug is about as high as an adjacent stud capacitor.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: January 13, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Scott J. Deboer, Vishnu K. Agarwal
  • Patent number: 6670256
    Abstract: Capacitor structures for use in integrated circuits and methods of their manufacture. The capacitor structures include a bottom electrode, a top electrode and a dielectric layer interposed between the bottom electrode and the top electrode. The capacitor structures further include a metal oxynitride barrier layer interposed between the dielectric layer and at least one of the bottom and top electrodes. Each metal oxynitride barrier layer acts to reduce undesirable oxidation of its associated electrode. Each metal oxynitride barrier layer can further aid in the repairing of oxygen vacancies in a metal oxide dielectric. The capacitors are suited for use as memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: December 30, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Sam Yang, Vishnu K. Agarwal
  • Patent number: 6670238
    Abstract: An intermediate metal plug is used to raise the platform to which contact is to be made. In the illustrated process, a partial bit line plug is formed adjacent a stacked capacitor, and an interlevel dielectric formed over the capacitor. The bit line contact is completed by extending a via from the bit line, formed above the interlevel dielectric, down to the level of the intermediate plug, and the via is filled with metal. The height of the via to be filled is thus reduced by the height of the intermediate plug. In one embodiment, the intermediate plug is slightly shorter than an adjacent container-shaped capacitor. In another embodiment, the intermediate plug is about as high as an adjacent stud capacitor.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: December 30, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Scott J. Deboer, Vishnu K. Agarwal
  • Patent number: 6667502
    Abstract: Structurally-stable, tall capacitors having unique three-dimensional architectures for semiconductor devices are disclosed. The capacitors include monolithically-fabricated upright microstructures, i.e., those having large height/width (H/W) ratios, which are mechanical reinforcement against shear forces and the like, by a brace layer that transversely extends between lateral sides of at least two of the free-standing microstructures. The brace layer is formed as a microbridge type structure spanning between the upper ends of the two or more microstructures.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: December 23, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, Gurtej Sandhu
  • Publication number: 20030232500
    Abstract: The present invention provides a processing system comprising a remote plasma activation region for formation of active gas species, a transparent transfer tube coupled between the remote activation region and a semiconductor processing chamber, and a source of photo-energy for maintaining activation of the active species or providing photo-energy for a non-plasma species during transfer through the transparent tube to the processing chamber. The source of photo-energy preferably includes an array of UV lamps. Additional UV lamps may also be used to further sustain active species and assist processes by providing additional in-situ energy through a transparent window of the processing chamber. The system can be utilized for processes such as layer-by-layer annealing and deposition and also removal of contaminants from deposited layers.
    Type: Application
    Filed: May 12, 2003
    Publication date: December 18, 2003
    Inventor: Vishnu K. Agarwal
  • Patent number: 6664583
    Abstract: Capacitor structures for use in integrated circuits and methods of their manufacture. The capacitor structures include a bottom electrode, a top electrode and a dielectric layer interposed between the bottom electrode and the top electrode. The capacitor structures further include a metal oxynitride barrier layer interposed between the dielectric layer and at least one of the bottom and top electrodes. Each metal oxynitride barrier layer acts to reduce undesirable oxidation of its associated electrode. Each metal oxynitride barrier layer can further aid in the repairing of oxygen vacancies in a metal oxide dielectric. The capacitors are suited for use as memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: December 16, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Sam Yang, Vishnu K. Agarwal
  • Patent number: 6649545
    Abstract: The present invention provides a plasma processing system comprising a remote plasma activation region for formation of active gas species, a transparent transfer tube coupled between the remote activation region and a semiconductor processing chamber, and a source of photo energy for maintaining activation of the active species during transfer from the remote plasma activation region to the processing chamber. The source of photo energy preferably includes an array of UV lamps. Additional UV lamps may also be used to further sustain active species and assist plasma processes by providing additional in-situ energy through a transparent window of the processing chamber. The system can be utilized for annealing.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: November 18, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Vishnu K. Agarwal
  • Patent number: 6638809
    Abstract: In one aspect, the invention encompasses a semiconductor circuit construction including a material which comprises Q, R, S and B. In such construction, Q comprises one or more refractory metals, R is selected from the group consisting of one or more of tungsten, aluminum and silicon, S is selected from the group consisting of one or more of nitrogen and oxygen, and B is boron. Also, in such construction R and Q do not comprise a common element. In another aspect, the invention encompasses a method of forming a capacitor. A first capacitor electrode is formed, a diffusion barrier layer is formed proximate the first capacitor electrode, and a dielectric layer is formed to be separated from the first capacitor electrode by the diffusion barrier layer. A second capacitor electrode is formed to be separated from the first electrode by the dielectric layer.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: October 28, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Vishnu K. Agarwal
  • Publication number: 20030199154
    Abstract: In accordance with one embodiment of the present invention, a method of interfacing a poly-metal stack and a semiconductor substrate is provided where an etch stop layer is provided in a polysilicon region of the stack. The present invention also addresses the relative location of the etch stop layer in the polysilicon region and a variety of stack materials and oxidation methods. The etch stop layer may be patterned within the poly or may be a continuous conductive etch stop layer in the poly. The present invention also relates more broadly to a process for forming wordline architecture of a memory cell. In accordance with another embodiment of the present invention, a semiconductor structure is provided comprising a poly-metal stack formed over a semiconductor substrate where the interface between an oxidation barrier placed over the stack and an oxidized portion of the stack lies along the sidewall of the poly.
    Type: Application
    Filed: May 14, 2003
    Publication date: October 23, 2003
    Inventor: Vishnu K. Agarwal
  • Patent number: 6635939
    Abstract: A diffusion barrier layer comprising TiNxBy is disclosed for protection of gate oxide layers in integrated transistors. The diffusion barrier layer can be fabricated by first forming a TiN layer and then incorporating boron into the TiN layer. The diffusion barrier layer can also be fabricated by forming a TiNxBy layer using a TDMAT process including boron. The diffusion barrier layer can also be fabricated by forming a TiNxBy layer using a CVD process. The diffusion barrier layer is of particular utility in conjunction with tungsten or tungsten silicide conductive layers formed by CVD.
    Type: Grant
    Filed: August 24, 1999
    Date of Patent: October 21, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, Gurtej S. Sandhu
  • Publication number: 20030189225
    Abstract: In one aspect, the invention encompasses a semiconductor circuit construction including a material which comprises Q, R, S and B. In such construction, Q comprises one or more refractory metals, R is selected from the group consisting of one or more of tungsten, aluminum and silicon, S is selected from the group consisting of one or more of nitrogen and oxygen, and B is boron. Also, in such construction R and Q do not comprise a common element. In another aspect, the invention encompasses a method of forming a capacitor. A first capacitor electrode is formed, a diffusion barrier layer is formed proximate the first capacitor electrode, and a dielectric layer is formed to be separated from the first capacitor electrode by the diffusion barrier layer. A second capacitor electrode is formed to be separated from the first electrode by the dielectric layer.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 9, 2003
    Inventor: Vishnu K. Agarwal
  • Patent number: 6630391
    Abstract: A diffusion barrier layer comprising TiNxBy is disclosed for protection of gate oxide layers in integrated transistors. The diffusion barrier layer can be fabricated by first forming a TiN layer and then incorporating boron into the TiN layer. The diffusion barrier layer can also be fabricated by forming a TiNxBy layer using a TDMAT process including boron. The diffusion barrier layer can also be fabricated by forming a TiNxBy layer using a CVD process. The diffusion barrier layer is of particular utility in conjunction with tungsten or tungsten silicide conductive layers formed by CVD.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: October 7, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, Gurtej S. Sandhu
  • Patent number: 6631069
    Abstract: Capacitor structures for use in integrated circuits and methods of their manufacture. The capacitor structures include a bottom electrode, a top electrode and a dielectric layer interposed between the bottom electrode and the top electrode. The capacitor structures further include a metal oxynitride barrier layer interposed between the dielectric layer and at least one of the bottom and top electrodes. Each metal oxynitride barrier layer acts to reduce undesirable oxidation of its associated electrode. Each metal oxynitride barrier layer can further aid in the repairing of oxygen vacancies in a metal oxide dielectric. The capacitors are suited for use as memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: October 7, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Sam Yang, Vishnu K. Agarwal
  • Patent number: 6612901
    Abstract: Planarizing machines, planarizing pads, and methods for planarizing or endpointing mechanical and/or chemical-mechanical planarization of microelectronic substrates. One particular embodiment is a planarizing machine that controls the movement of a planarizing pad along a pad travel path to provide optical analysis of a substrate assembly during a planarizing cycle. The planarizing machine can include a table having an optical opening at an illumination site in a planarizing zone and a light source aligned with the illumination site to direct a light beam through the optical opening in the table. The planarizing machine can further include a planarizing pad and a pad advancing mechanism. The planarizing pad has a planarizing medium and at least one optically transmissive window along the pad travel path. The pad advancing mechanism has an actuator system coupled to the pad and a position monitor coupled to the actuator system.
    Type: Grant
    Filed: June 7, 2000
    Date of Patent: September 2, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Vishnu K. Agarwal
  • Patent number: 6607975
    Abstract: A damascene process includes the deposition of a first layer of insulation over a substance and the etching of a first hole in the first layer of insulation. The first hole is filled with a metal. A second layer of insulation is deposited over the first layer of insulation, and a second hole is etched in the second layer of insulation and over the first hole. An interface layer is provided over the metal and within the second hole. The interface layer is exposed to a nitrogen/hydrogen plasma to passivate the interface layer and reduce an ability of the interface layer to associate with oxygen.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: August 19, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Vishnu K. Agarwal