Patents by Inventor Vishnu K. Agarwal

Vishnu K. Agarwal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7274838
    Abstract: The present technique relates to a method for fabricating an optical integrated circuit amplifier with another type of optical integrated circuit. In optical networks, optical components exchange optical signals to communicate between different systems coupled to the optical components. The optical components may include optical integrated circuit amplifiers and other optical integrated circuits coupled together through optical paths. The optical integrated circuit amplifiers and other optical integrated circuits of the optical components are fabricated on the same substrate to reduce the cost of fabrication, maintenance and installation, while enhancing the performance of the optical component.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: September 25, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Vishnu K. Agarwal
  • Patent number: 7271092
    Abstract: A diffusion barrier layer comprising TiNxBy is disclosed for protection of gate oxide layers in integrated transistors. The diffusion barrier layer can be fabricated by first forming a TiN layer and then incorporating boron into the TiN layer. The diffusion barrier layer can also be fabricated by forming a TiNxBy layer using a TDMAT process including boron. The diffusion barrier layer can also be fabricated by forming a TiNxBy layer using a CVD process. The diffusion barrier layer is of particular utility in conjunction with tungsten or tungsten silicide conductive layers formed by CVD.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: September 18, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, Gurtej S. Sandhu
  • Patent number: 7268072
    Abstract: An intermediate metal plug is used to raise the platform to which contact is to be made. In the illustrated process, a partial bit line plug is formed adjacent a stacked capacitor, and an interlevel dielectric formed over the capacitor. The bit line contact is completed by extending a via from the bit line, formed above the interlevel dielectric, down to the level of the intermediate plug, and the via is filled with metal. The height of the via to be filled is thus reduced by the height of the intermediate plug. In one embodiment, the intermediate plug is slightly shorter than an adjacent container-shaped capacitor. In another embodiment, the intermediate plug is about as high as an adjacent stud capacitor.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: September 11, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Scott J. Deboer, Vishnu K. Agarwal
  • Patent number: 7253076
    Abstract: Capacitors having increased capacitance include an enhanced-surface-area (rough-surfaced) electrically conductive layer or other layers that are compatible with the high-dielectric constant materials. In one approach, an enhanced-surface-area electrically conductive layer for such capacitors is formed by processing a ruthenium oxide layer at high temperature at or above 500° C. and low pressure 75 torr or below, most desirably 5 torr or below, to produce a roughened ruthenium layer having a textured surface with a mean feature size of at least about 100 Angstroms. The initial ruthenium oxide layer may be provided by chemical vapor deposition techniques or sputtering techniques or the like. The layer may be formed over an underlying electrically conductive layer. The processing may be performed in an inert ambient or in a reducing ambient.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: August 7, 2007
    Assignee: Micron Technologies, Inc.
    Inventors: Vishnu K. Agarwal, Garo Derderian, Gurtej S. Sandhu, Weimin M. Li, Mark Visokay, Cem Basceri, Sam Yang
  • Patent number: 7251387
    Abstract: The present technique relates to a method and apparatus for fabricating an optical integrated circuit amplifier with another type of optical integrated circuit. In optical networks, optical components exchange optical signals to communicate between different systems coupled to the optical components. The optical components may include optical integrated circuit amplifiers and other optical integrated circuits coupled together through optical paths. The optical integrated circuit amplifiers and other optical integrated circuits of the optical components are fabricated on the same substrate to reduce the cost of fabrication, maintenance and installation, while enhancing the performance of the optical component.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: July 31, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Vishnu K. Agarwal
  • Patent number: 7238616
    Abstract: The present invention provides a processing system comprising a remote plasma activation region for formation of active gas species, a transparent transfer tube coupled between the remote activation region and a semiconductor processing chamber, and a source of photo-energy for maintaining activation of the active species or providing photo-energy for a non-plasma species during transfer through the transparent tube to the processing chamber. The source of photo-energy preferably includes an array of UV lamps. Additional UV lamps may also be used to further sustain active species and assist processes by providing additional in-situ energy through a transparent window of the processing chamber. The system can be utilized for processes such as layer-by-layer annealing and deposition and also removal of contaminants from deposited layers.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: July 3, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Vishnu K. Agarwal
  • Patent number: 7232721
    Abstract: Systems, devices, structures, and methods are described that inhibit dielectric degradation at high temperatures. An enhanced capacitor is discussed. The enhanced capacitor includes a first electrode, a dielectric that includes ditantalum pentaoxide, and a second electrode having a compound. The compound includes a first substance and a second substance. The second electrode includes a trace amount of the first substance. The morphology of the semiconductor structure remains stable when the trace amount of the first substance is oxidized during crystallization of the dielectric. In one embodiment, the crystalline structure of the dielectric describes substantially a (001) lattice plane.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: June 19, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Vishnu K. Agarwal, Dan Gealy
  • Patent number: 7229338
    Abstract: Planarizing machines, planarizing pads, and methods for planarizing or endpointing mechanical and/or chemical-mechanical planarization of microelectronic substrates. One particular embodiment is a planarizing machine that controls the movement of a planarizing pad along a pad travel path to provide optical analysis of a substrate assembly during a planarizing cycle. The planarizing machine can include a table having an optical opening at an illumination site in a planarizing zone and a light source aligned with the illumination site to direct a light beam through the optical opening in the table. The planarizing machine can further include a planarizing pad and a pad advancing mechanism. The planarizing pad has a planarizing medium and at least one optically transmissive window along the pad travel path. The pad advancing mechanism has an actuator system coupled to the pad and a position monitor coupled to the actuator system.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: June 12, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Vishnu K. Agarwal
  • Patent number: 7205600
    Abstract: A capacitor forming method can include forming an insulation layer over a substrate and forming a barrier layer to threshold voltage shift inducing material over the substrate. An opening can be formed at least into the insulation layer and a capacitor dielectric layer formed at least within the opening. Threshold voltage inducing material can be provided over the barrier layer but be retarded in movement into an electronic device comprised by the substrate. The dielectric layer can comprise a tantalum oxide and the barrier layer can include a silicon nitride. Providing threshold voltage shift inducing material can include oxide annealing dielectric layer such as with N2O. The barrier layer can be formed over the insulation layer, the insulation layer can be formed over the barrier layer, or the barrier layer can be formed over a first insulation layer with a second insulation layer formed over the barrier layer.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: April 17, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, F. Daniel Gealy, Kunal R. Parekh, Randhir P. S. Thakur
  • Patent number: 7166885
    Abstract: The invention includes semiconductor devices. In one implementation, semiconductor device includes a first conductive material. A first layer of a dielectric material is over the first conductive material. A second layer of the dielectric material is on the first layer. A second conductive material is over the second layer of the dielectric material. A device in accordance with an implementation of the invention can include a pair of capacitor electrodes having capacitor dielectric material therebetween comprising a composite of two immediately juxtaposed and contacting, yet discrete, layers of the same capacitor dielectric material.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: January 23, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, Garo J. Derderian
  • Patent number: 7166527
    Abstract: In accordance with one embodiment of the present invention, a method of interfacing a poly-metal structure and a semiconductor substrate is provided where an etch stop layer is provided in a polysilicon region of the structure. The present invention also addresses the relative location of the etch stop layer in the polysilicon region and a variety of structure materials and oxidation methods. Additional embodiments are disclosed and claimed.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: January 23, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Vishnu K. Agarwal
  • Patent number: 7157324
    Abstract: Undesirable transistor leakage in transistor structures becomes greatly reduced in substrates having a doped implant region formed via pulling back first and second layers of a process stack. A portion of the substrate, which also has first and second layers deposited thereon, defines the process stack. The dopant is selected having the same n- or p-typing as the substrate. Through etching, the first and second layers of the process stack become pulled back from a trench wall of the substrate to form the implant region. Occupation of the implant region by the dopant prevents undesirable transistor leakage because the electrical characteristics of the implant region are so significantly changed, in comparison to central areas of the substrate underneath the first layer, that the threshold voltage of the implant region is raised to be about equivalent to or greater than the substantially uniform threshold voltage in the central area.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: January 2, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, Fred Fishburn, Rongsheng Yang, Howard E. Rhodes, Jeffrey A. McKee
  • Patent number: 7144810
    Abstract: A method for forming a rough ruthenium-containing layer on the surface of a substrate assembly includes providing a ruthenium-containing precursor into the reaction chamber. A rough ruthenium layer may be deposited on the surface of the substrate assembly at a rate of about 100 ?/minute to about 500 ?/minute using the ruthenium-containing precursor. Further, a rough ruthenium oxide layer may be formed by providing a ruthenium-containing precursor and an oxygen-containing precursor into the reaction chamber to deposit the rough ruthenium oxide layer on the surface of the substrate assembly at a rate of about 100 ?/minute to about 1200 ?/minute. An anneal of the layers may be performed to further increase the roughness. In addition, conductive structures including a rough ruthenium layer or a rough ruthenium oxide layer are provided. Such layers may be used in conjunction with non-rough ruthenium and/or non-rough ruthenium oxide layers to form conductive structures.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: December 5, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Garo Derderian, Vishnu K. Agarwal
  • Patent number: 7112503
    Abstract: A capacitor fabrication method may include atomic layer depositing a conductive barrier layer to oxygen diffusion over the first electrode. A method may instead include chemisorbing a layer of a first precursor at least one monolayer thick over the first electrode and chemisorbing a layer of a second precursor at least one monolayer thick on the first precursor layer, a chemisorption product of the first and second precursor layers being comprised by a layer of a conductive barrier material. The barrier layer may be sufficiently thick and dense to reduce oxidation of the first electrode by oxygen diffusion from over the barrier layer. An alternative method may include forming a first capacitor electrode over a substrate, the first electrode having an inner surface area per unit area and an outer surface area per unit area that are both greater than an outer surface area per unit area of the substrate. A capacitor dielectric layer and a second capacitor electrode may be formed over the dielectric layer.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: September 26, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, Garry A. Mercaldi
  • Patent number: 7112245
    Abstract: A planarizing pad for planarizing a microelectronic substrate, and a method and apparatus for forming the planarizing pad. In one embodiment, planarizing pad material is mixed with compressed gas to form a plurality of discrete elements that are distributed on a support material. At least a portion of the discrete elements are spaced apart from each other on the support material to form a textured surface for engaging a microelectronic substrate and removing material from the microelectronic substrate. The discrete elements can be uniformly or randomly distributed on the support material, and the discrete elements can be directly affixed to the support material or affixed to the support material with an adhesive.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: September 26, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, Dinesh Chopra
  • Patent number: 7105899
    Abstract: Undesirable transistor leakage in transistor structures becomes greatly reduced in substrates having a doped implant region formed via pulling back first and second layers of a process stack. A portion of the substrate, which also has first and second layers deposited thereon, defines the process stack. The dopant is selected having the same n- or p-typing as the substrate. Through etching, the first and second layers of the process stack become pulled back from a trench wall of the substrate to form the implant region. Occupation of the implant region by the dopant prevents undesirable transistor leakage because the electrical characteristics of the implant region are so significantly changed, in comparison to central areas of the substrate underneath the first layer, that the threshold voltage of the implant region is raised to be about equivalent to or greater than the substantially uniform threshold voltage in the central area.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: September 12, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, Fred Fishburn, Rongsheng Yang, Howard E. Rhodes, Jeffrey A. McKee
  • Patent number: 7094673
    Abstract: In accordance with one embodiment of the present invention, a method of forming an etch stop layer in a semiconductor structure is provided. A polysilicon layer on the semiconductor substrate and ions are implanted into the polysilicon layer to form an etch stop layer. An oxide layer can be provided between the semiconductor substrate and the polysilicon layer.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: August 22, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Vishnu K. Agarwal
  • Patent number: 7094657
    Abstract: In a semiconductor device including a first conductive layer, the first conductive layer is treated with a nitrogen/hydrogen plasma before an additional layer is deposited thereover. The treatment stuffs the surface with nitrogen, thereby preventing oxygen from being adsorbed onto the surface of the first conductive layer. In one embodiment, a second conductive layer is deposited onto the first conductive layer, and the plasma treatment lessens if not eliminates an oxide formed between the two layers as a result of subsequent thermal treatments. In another embodiment, a dielectric layer is deposited onto the first conductive layer, and the plasma treatment lessens if not eliminates the ability of the first conductive layer to incorporate oxygen from the dielectric.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: August 22, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Vishnu K. Agarwal
  • Patent number: 7084504
    Abstract: A diffusion barrier layer comprising TiNxBy is disclosed for protection of gate oxide layers in integrated transistors. The diffusion barrier layer can be fabricated by first forming a TiN layer and then incorporating boron into the TiN layer. The diffusion barrier layer can also be fabricated by forming a TiNxBy layer using a TDMAT process including boron. The diffusion barrier layer can also be fabricated by forming a TiNxBy layer using a CVD process. The diffusion barrier layer is of particular utility in conjunction with tungsten or tungsten silicide conductive layers formed by CVD.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: August 1, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, Gurtej S. Sandhu
  • Patent number: 7067861
    Abstract: In a semiconductor device including a first conductive layer, the first conductive layer is treated with a nitrogen/hydrogen plasma before an additional layer is deposited thereover. The treatment stuffs the surface with nitrogen, thereby preventing oxygen from being adsorbed onto the surface of the first conductive layer. In one embodiment, a second conductive layer is deposited onto the first conductive layer, and the plasma treatment lessens if not eliminates an oxide formed between the two layers as a result of subsequent thermal treatments. In another embodiment, a dielectric layer is deposited onto the first conductive layer, and the plasma treatment lessens if not eliminates the ability of the first conductive layer to incorporate oxygen from the dielectric.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: June 27, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Vishnu K. Agarwal