Patents by Inventor Vladek Kasperchik

Vladek Kasperchik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230040170
    Abstract: A three-dimensional printing kit can include a wetting agent, a binding agent, and a particulate build material. The wetting agent an include water, from about 5 wt % to about 60 wt % organic co-solvent, and from about 0.1 wt % to about 10 wt% surfactant. The binding agent can include from about 2 wt % to about 25 wt % polymer binder and a liquid vehicle. The particulate build material can include from about 80 wt % to 100 wt % metal particles that can have a D50 particle size ranging from about 2 gm to about 150 ?m.
    Type: Application
    Filed: January 10, 2020
    Publication date: February 9, 2023
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Natalie Harvey, Vladek Kasperchik, Emily Register
  • Patent number: 11541568
    Abstract: In an example of a three-dimensional (3D) printing method, a ceramic build material is applied. A detailing agent fluid is applied to a portion of the ceramic build material. The detailing agent fluid includes a cationic polymer. A liquid functional material, including an anionically stabilized susceptor material, is applied to another portion of the ceramic build material that is in contact with the portion of the ceramic build material having the detailing agent fluid thereon, such that at least some of the anionically stabilized susceptor material reacts with at least some of the cationic polymer that is in contact therewith to prevent spreading of the anionically stabilized susceptor material.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: January 3, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: James Elmer Abbott, Jr., Vladek Kasperchik
  • Patent number: 11534824
    Abstract: An example of a composition includes a host metal present in an amount ranging from about 95.00 weight percent to about 99.99 weight percent, based on a total weight of the composition. A flow additive is present in an amount ranging from about 0.01 weight percent to about 5.00 weight percent, based on the total weight of the composition. The flow additive consists of a metal containing compound that is reducible to an elemental metal in a reducing environment at a reducing temperature less than or equal to a sintering temperature of the host metal. The elemental metal is capable of being incorporated into a bulk metal phase of the host metal in a final metal object. The composition is spreadable, having a Hausner Ratio less than 1.25.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: December 27, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Vladek Kasperchik, Mohammed S. Shaarawi, James McKinnell, Michael G. Monroe, Jason Hower
  • Publication number: 20220388239
    Abstract: The present disclosure is drawn to 3-dimensional printed parts that can include a conductive composite portion and an insulating portion. The conductive composite portion can include a matrix of fused thermoplastic polymer particles interlocked with a matrix of sintered elemental transition metal particles. The insulating portion can include a matrix of fused thermoplastic polymer particles that are continuous with the matrix of fused thermoplastic polymer particles in the conductive composite portion. The insulating portion can be substantially free of sintered elemental transition metal particles and can include transition metal oxide bronze particles.
    Type: Application
    Filed: August 19, 2022
    Publication date: December 8, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Sterling CHAFFINS, Cassady Sparks ROOP, Kevin P. DEKAM, Vladek KASPERCHIK, Ali EMAMJOMEH, Johnathon HOLROYD, Stephen G. RUDISILL, Alexey S. KABALNOV
  • Patent number: 11511338
    Abstract: Described herein are compositions, methods, and systems for printing metal three-dimensional objects. In an example, described is a composition for three-dimensional printing comprising: a metal powder build material, wherein the metal powder build material has an average particle size of from about 10 ?m to about 250 ?m; and a binder fluid comprising: an aqueous liquid vehicle, and latex polymer particles dispersed in the aqueous liquid vehicle, wherein the latex polymer particles have an average particle size of from about 10 nm to about 300 nm.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: November 29, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Vladek Kasperchik, David Michael Ingle, Cory J Ruud
  • Publication number: 20220362992
    Abstract: In one example, a lighting device for an additive manufacturing machine includes first light sources each to emit monochromatic light within a first band of wavelengths that includes a peak light absorption of a liquid coalescing agent and second light sources each to emit monochromatic light within a second band of wavelengths different from the first band of wavelengths. Each of the first light sources or each of multiple groups of the first light sources is individually addressable to emit monochromatic light independent of any other of the first light sources or of any other group of the first light sources and each of the second light sources or each of multiple groups of the second light sources is individually addressable to emit monochromatic light independent of any other of the second light sources or of any other group of the second light sources.
    Type: Application
    Filed: August 1, 2022
    Publication date: November 17, 2022
    Inventors: James Elmer Abbott, JR., Alexander Govyadinov, Vladek Kasperchik, Krzysztof Nauka, Sivapackia Ganapathiappan, Lihua Zhao, Howard S. Tom, Yan Zhao, Hou T. Ng
  • Patent number: 11498130
    Abstract: In an example of a method for three-dimensional (3D) printing, build material layers are patterned to form an intermediate structure. During patterning, a binding agent is selectively applied to define a patterned intermediate part. Also during patterning, i) the binding agent and a separate agent including a gas precursor are, or ii) a combined agent including a binder and the gas precursor is, selectively applied to define a build material support structure adjacent to at least a portion of the patterned intermediate part. The intermediate structure is heated to a temperature that activates the gas precursor to create gas pockets in the build material support structure.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: November 15, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Mohammed S Shaarawi, James McKinnell, Vladek Kasperchik, David A Champion
  • Publication number: 20220348780
    Abstract: An example of a dispersion includes cesium tungsten oxide nanoparticles, a zwitterionic stabilizer, and a balance of water. An example of a jettable composition includes cesium tungsten oxide nanoparticles, a zwitterionic stabilizer, a surfactant, a co-solvent, and a balance of water. A method for improving the stabilization of a jettable composition includes incorporating a zwitterionic stabilizer in the jettable composition, which includes the cesium tungsten oxide nanoparticles, the surfactant, the co-solvent, and the balance of water.
    Type: Application
    Filed: July 13, 2022
    Publication date: November 3, 2022
    Inventors: Stephen G. Rudisill, Vladek Kasperchik, Alexey S. Kabalnov, Shannon Reuben Woodruff, Thomas M. Sabo
  • Patent number: 11458675
    Abstract: The present disclosure is drawn to material sets for 3-dimensional printing. The material set can include a thermoplastic polymer powder having an average particle size from 20 ?m to 200 ?m, a conductive fusing agent composition including a transition metal, and nonconductive fusing agent composition. The nonconductive fusing agent composition can include transition metal oxide bronze particles.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: October 4, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Sterling Chaffins, Cassady Sparks Roop, Kevin P DeKam, Vladek Kasperchik, Ali Emamjomeh, Johnathon Holroyd, Stephen G Rudisill, Alexey S Kabalnov
  • Patent number: 11458679
    Abstract: In one example, a lighting device for an additive manufacturing machine includes an array of light sources each to emit monochromatic light within a band of wavelengths that includes a peak light absorption of a liquid coalescing agent to be dispensed on to a build material.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: October 4, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: James Elmer Abbott, Jr., Alexander Govyadinov, Vladek Kasperchik, Krzysztof Nauka, Sivapackia Ganapathiappan, Lihua Zhao, Howard S. Tom, Jr., Yan Zhao, Hou T. Ng
  • Publication number: 20220297182
    Abstract: In a three-dimensional (3D) printing method example, a metallic build material is applied. A binder fluid is selectively applied on at least a portion of the metallic build material. The binder fluid includes a liquid vehicle and polymer particles dispersed in the liquid vehicle. The application of the metallic build material and the selective application of the binder fluid are repeated to create a patterned green part. The patterned green part is heated to at about a melting point of the polymer particles to activate the binder fluid and create a cured green part. The cured green part is heated to a thermal decomposition temperature of the polymer particles to create an at least substantially polymer-free gray part. The at least substantially polymer-free gray part is heated to a sintering temperature to form a metallic part.
    Type: Application
    Filed: June 10, 2022
    Publication date: September 22, 2022
    Inventors: Vladek Kasperchik, Mohammed S. Shaarawi, Michael G. Monroe, David Michael Ingle
  • Publication number: 20220274175
    Abstract: A three-dimensional printing system can include a particulate build material including metal particles. The three-dimensional printing system can include a binding agent applicator fluidly coupled or coupleable to a binding agent. The three-dimensional printing system can include a suppression agent applicator fluidly coupled or coupleable to a melting point suppression agent, the melting point suppression agent including a dispersion of melting point suppression particles. The three-dimensional printing system can include a hardware controller to generate a command to direct the binding agent applicator to iteratively apply the binding agent to the particulate build material to form individually patterned object layers of a green body object, and direct the suppression agent applicator to iteratively apply the melting point suppression agent to a discrete location of the individually patterned object layers. The discrete location can include a discrete surface region of the green body object.
    Type: Application
    Filed: October 15, 2019
    Publication date: September 1, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Vladek Kasperchik, Mohammed S. Shaarawi, Mackensie C. Smith
  • Publication number: 20220275204
    Abstract: The present disclosure describes binder agents for printing three-dimensional green body objects, which can include water, an organic co-solvent, a nonionic surfactant, a dihydrazide compound, and latex particles. The nonionic surfactant can include two hydrophilic head groups and two hydrophobic tail groups per molecule.
    Type: Application
    Filed: October 11, 2019
    Publication date: September 1, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Tienteh Chen, Natalie Harvey, Cory J. Ruud, Vladek Kasperchik
  • Publication number: 20220267620
    Abstract: A multi-fluid kit for three-dimensional printing can include a wetting agent and a binding agent. The wetting agent can include from 0 wt % to about 49.8 wt % water, from about 0.5 wt % to about 30 wt % film-forming organic solvent that can have a boiling point from greater than about 100° C. to about 350° C., and from about 30 wt % to about 99.5 wt % amphiphilic solvent that can have a boiling point from about 45° C. to less than about 100° C. The amphiphilic solvent can be water-miscible and can be present in the wetting agent at a greater concentration than the water and at a greater concentration than the film-forming solvent. The binding agent can include from about 2 wt % to about 30 wt % of a polymer binder dispersed in an aqueous liquid vehicle.
    Type: Application
    Filed: September 5, 2019
    Publication date: August 25, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Vladek Kasperchik, Jennifer Wu, Michael G. Monroe
  • Patent number: 11421123
    Abstract: An example of a dispersion includes cesium tungsten oxide nanoparticles, a zwitterionic stabilizer, and a balance of water. An example of a jettable composition includes cesium tungsten oxide nanoparticles, a zwitterionic stabilizer, a surfactant, a co-solvent, and a balance of water. A method for improving the stabilization of a jettable composition includes incorporating a zwitterionic stabilizer in the jettable composition, which includes the cesium tungsten oxide nanoparticles, the surfactant, the co-solvent, and the balance of water.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: August 23, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Stephen Rudisill, Vladek Kasperchik, Alexey S Kabalnov, Shannon Reuben Woodruff, Thomas M Sabo
  • Publication number: 20220258426
    Abstract: In one example a system is for post-processing a three-dimensional (3D) object generated in an additive manufacturing process in which an identifiable agent is applied to a portion of a build material to form a portion of the 3D object. The system comprises an identification unit and a sensor. The identification unit is to cause the identifiable agent to become distinguishable to thereby cause the portion of the 3D object, corresponding to the portion of build material to which the identifiable agent was applied, to be distinguishable from any build material remnant disposed on the 3D object and to which no identifiable agent was applied. The sensor is to distinguish the build material remnant from the portion of the 3D object.
    Type: Application
    Filed: October 9, 2019
    Publication date: August 18, 2022
    Inventors: Pablo Antonio MURCIEGO RODRIGUEZ, Vladek KASPERCHIK, Esteve COMAS CESPEDES, Alexey KABALNOV
  • Patent number: 11389867
    Abstract: In a three-dimensional (3D) printing method example, a metallic build material is applied. A binder fluid is selectively applied on at least a portion of the metallic build material. The binder fluid includes a liquid vehicle and polymer particles dispersed in the liquid vehicle. The application of the metallic build material and the selective application of the binder fluid are repeated to create a patterned green part. The patterned green part is heated to at about a melting point of the polymer particles to activate the binder fluid and create a cured green part. The cured green part is heated to a thermal decomposition temperature of the polymer particles to create an at least substantially polymer-free gray part. The at least substantially polymer-free gray part is heated to a sintering temperature to form a metallic part.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: July 19, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Vladek Kasperchik, Mohammed S. Shaarawi, Michael G. Monroe, David Michael Ingle
  • Publication number: 20220186057
    Abstract: This disclosure describes multi-fluid kits for three-dimensional printing, three-dimensional printing kits, and systems for three-dimensional printing. In one example, a multi-fluid kit for three-dimensional printing can include a fusing agent and a detailing agent. The fusing agent can include water and metal oxide nanoparticles dispersed therein. The metal oxide nanoparticles can be selected from titanium dioxide, zinc oxide, cerium oxide, indium tin oxide, or a combination thereof. The metal oxide nanoparticles can have an average particle size from about 2 nm to about 500 nm. The detailing agent can include a detailing compound.
    Type: Application
    Filed: July 17, 2019
    Publication date: June 16, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Krzysztof Nauka, Vladek Kasperchik
  • Publication number: 20220134673
    Abstract: According to examples, an apparatus may include a processor and a memory on which are stored machine-readable instructions that when executed by the processor, cause the processor to determine physical characteristics of a build layer of build material particles. The instructions may also cause the processor to determine an adjustment to forming data based on the determined physical characteristics, the forming data to be used informing a subsequent build layer. The instructions may further cause the processor to apply the determined adjustment to the forming data for use in forming the subsequent build layer, in which portions of a three-dimensional (3D) object are to be formed in the build layer and the subsequent build layer.
    Type: Application
    Filed: July 7, 2019
    Publication date: May 5, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Daniel Mosher, Jennifer Wu, Vladek Kasperchik, David A. Champion
  • Patent number: 11318669
    Abstract: In a three-dimensional printing method example, a liquid functional agent is selectively applied. The liquid functional agent includes i) an energy source material or ii) an energy sink material. A metallic or ceramic build material is applied. The liquid functional agent is selectively applied any of before the metallic or ceramic build material, after the metallic or ceramic build material, or both before and after the metallic or ceramic build material. The liquid functional agent patterns the metallic or ceramic build material to form a composite layer. At least some of the metallic or ceramic build material is exposed to energy. A reaction involving i) the energy source material or ii) the energy sink material is initiated to alter a thermal condition of the composite layer.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: May 3, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Mohammed S. Shaarawi, Vladek Kasperchik, James McKinnell, David A. Champion