Patents by Inventor Warran Boyd Lineton

Warran Boyd Lineton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200200079
    Abstract: A component for an engine is provided. The component includes a thermal barrier coating applied to a body portion formed of metal, such as steel or another ferrous or iron-based material. According to one embodiment, a bond layer of a metal is applied to the body portion, followed by a mixed layer of metal and ceramic with a gradient structure, and then optionally a top layer of metal. The thermal barrier coating can also include a ceramic layer between the mixed layer and top layer, or as the outermost layer. The ceramic includes at least one of ceria, ceria stabilized zirconia, yttria, yttria stabilized zirconia, calcia stabilized zirconia, magnesia stabilized zirconia, and zirconia stabilized by another oxide. The thermal barrier coating can be applied by thermal spray. The thermal barrier coating preferably has a thickness less than 200 microns and a surface roughness Ra of not greater than 3 microns.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 25, 2020
    Inventor: Warran Boyd LINETON
  • Publication number: 20200123998
    Abstract: A vehicle internal combustion piston and method of construction thereof are provided. The piston includes piston body extending along a central longitudinal axis, having an upper combustion wall forming an upper combustion surface and an undercrown surface opposite the upper combustion surface. An annular ring belt region depends from the upper combustion surface, a pair of skirt panels depend from the ring belt region, and a pair of pin bosses depend from the undercrown surface to provide laterally spaced pin bores aligned along a pin bore axis for receipt of a wrist pin. The undercrown surface forms a central undercrown region, and a portion of either an open outer cooling gallery, a sealed outer cooling gallery, or an outer galleryless region. A coating including copper is applied to hot spots along the undercrown surface to mitigate the hot spots provide a more uniform temperature along the undercrown surface during operation.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 23, 2020
    Inventors: Warran Boyd Lineton, Miguel Azevedo, Thomas Egerer, Gregory Salenbien, Neil Ainsworth
  • Publication number: 20200088127
    Abstract: A vehicle internal combustion piston and method of construction thereof are provided. The piston includes piston body extending along a central longitudinal axis, having an upper combustion wall forming an upper combustion surface and an undercrown surface opposite the upper combustion surface. An annular ring belt region depends from the upper combustion surface, a pair of skirt panels depend from the ring belt region, and a pair of pin bosses depend from the undercrown surface to provide laterally spaced pin bores aligned along a pin bore axis for receipt of a wrist pin. The undercrown surface forms a central undercrown region, and a portion of either an open outer cooling gallery, a sealed outer cooling gallery, or an outer galleryless region. A coating comprising a base layer including nickel and a catalyst layer including rhodium is applied to the undercrown surface.
    Type: Application
    Filed: September 17, 2018
    Publication date: March 19, 2020
    Inventors: Timothy C. Vezina, Warran Boyd Lineton, Jeffrey Lee Riffe
  • Patent number: 10578014
    Abstract: A component for an engine is provided. The component includes a thermal barrier coating applied to a body portion formed of metal, such as steel or another ferrous or iron-based material. According to one embodiment, a bond layer of a metal is applied to the body portion, followed by a mixed layer of metal and ceramic with a gradient structure, and then optionally a top layer of metal. The thermal barrier coating can also include a ceramic layer between the mixed layer and top layer, or as the outermost layer. The ceramic includes at least one of ceria, ceria stabilized zirconia, yttria, yttria stabilized zirconia, calcia stabilized zirconia, magnesia stabilized zirconia, and zirconia stabilized by another oxide. The thermal barrier coating can be applied by thermal spray. The thermal barrier coating preferably has a thickness less than 200 microns and a surface roughness Ra of not greater than 3 microns.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: March 3, 2020
    Assignee: Tenneco Inc.
    Inventor: Warran Boyd Lineton
  • Patent number: 10578050
    Abstract: A piston for a diesel engine is provided. The piston includes a thermal barrier coating applied to a crown formed of steel. A layer of a metal bond material is first applied to a combustion surface of the crown, followed by a gradient structure including a mixture of the metal bond material and a ceramic material, followed by a layer of the ceramic material. The ceramic material includes at least one of ceria, ceria stabilized zirconia, yttria stabilized zirconia, calcia stabilized zirconia, magnesia stabilized zirconia, and zirconia stabilized by another oxide. The thermal barrier coating is applied by a thermal spray process or HVOF. The thermal barrier coating has a porosity of 2% by vol. to 25% vol., based on the total volume of the thermal barrier coating, a thickness of less than 1 mm, and a thermal conductivity of less than 1.00 W/m·K.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: March 3, 2020
    Assignee: Tenneco Inc.
    Inventors: Warran Boyd Lineton, Miguel Azevedo, Greg Salenbien
  • Publication number: 20200040841
    Abstract: A piston for a heavy duty diesel engine including a composite layer forming at least a portion of a combustion surface is provided. The composite layer has a thickness greater than 500 microns and includes a mixture of components typically used to form brake pads, such as a thermoset resin, an insulating component, strengthening fibers, and an impact toughening additive. According to one example, the thermoset resin is a phenolic resin, the insulating component is a ceramic, the strengthening fibers are graphite, and the impact toughening additive is an aramid pulp of fibrillated chopped synthetic fibers. The composite layer also has a thermal conductivity of 0.8 to 5 W/m·K. The body portion of the piston can include an undercut scroll thread to improve mechanical locking of the composite layer. The piston can also include a ceramic insert between the body portion and the composite layer.
    Type: Application
    Filed: October 15, 2019
    Publication date: February 6, 2020
    Inventors: WARRAN BOYD LINETON, ROSS ALLEN EVERS, GREG SALENBIEN
  • Patent number: 10519854
    Abstract: A component for exposure to a combustion chamber of a diesel engine and/or exhaust gas, such as a cylinder liner or valve face, is provided. The component includes a thermal barrier coating applied to a body portion formed of steel. A layer of a metal bond material is first applied, followed by a gradient structure including a mixture of the metal bond material and a ceramic material, followed by a layer of the ceramic material. The ceramic material includes at least one of ceria, ceria stabilized zirconia, yttria stabilized zirconia, calcia stabilized zirconia, magnesia stabilized zirconia, and zirconia stabilized by another oxide. The thermal barrier coating is applied by thermal spray or HVOF. The thermal barrier coating has a porosity of 2% by vol. to 25% vol., a thickness of less than 1 mm, and a thermal conductivity of less than 1.00 W/m·K.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: December 31, 2019
    Assignee: Tenneco Inc.
    Inventors: Warran Boyd Lineton, Miguel Azevedo, Greg Salenbien
  • Publication number: 20190353215
    Abstract: A coated backing plate for a brake pad and method of manufacturing a brake pad having a coated backing plate, where the coating for the backing plate includes a bond layer. The bond layer includes an inboard surface, an outboard surface, a closed pore network toward the outboard surface that faces the inboard surface of the reinforcement plate, and an open pore network at the inboard surface of the bond layer. The open pore network includes a recessed topology having a plurality of craters configured to interlock a friction material of a friction pad or one or more intermediate layers, such as a transition layer and/or a thermal barrier layer.
    Type: Application
    Filed: May 16, 2019
    Publication date: November 21, 2019
    Inventors: David Douglas Muffley, Gregory Michael Vyletel, Warran Boyd Lineton
  • Patent number: 10443537
    Abstract: A piston for a heavy duty diesel engine including a composite layer forming at least a portion of a combustion surface is provided. The composite layer has a thickness greater than 500 microns and includes a mixture of components typically used to form brake pads, such as a thermoset resin, an insulating component, strengthening fibers, and an impact toughening additive. According to one example, the thermoset resin is a phenolic resin, the insulating component is a ceramic, the strengthening fibers are graphite, and the impact toughening additive is an aramid pulp of fibrillated chopped synthetic fibers. The composite layer also has a thermal conductivity of 0.8 to 5 W/m·K. The body portion of the piston can include an undercut scroll thread to improve mechanical locking of the composite layer. The piston can also include a ceramic insert between the body portion and the composite layer.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: October 15, 2019
    Assignee: Tenneco Inc.
    Inventors: Warran Boyd Lineton, Ross Allen Evers, Greg Salenbien
  • Patent number: 10428760
    Abstract: A piston for an internal combustion engine and method of construction thereof are provided. The piston includes an upper crown formed at least in part by a first metal material and a thermally insulating insert. The upper crown has an upper wall forming an upper combustion surface and a ring belt region. The upper combustion surface is formed at least in part by the thermally insulating insert. The thermally insulating insert has a base surface with pores extending upwardly therein. The first metal material is infused and solidified in the pores, with the first metal material forming a first bonding surface. The piston further includes a body portion formed from a second metal material. The body portion provides pin bosses having coaxially aligned pin bores and diametrically opposite skirt portions. The body portion has a second bonding surface bonded to the first bonding surface of the first metal material.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: October 1, 2019
    Assignee: Tenneco Inc.
    Inventors: Warran Boyd Lineton, Miguel Azevedo, Greg Salenbien
  • Publication number: 20190257265
    Abstract: A piston for an internal combustion engine is provided. The piston includes a coating applied to a ferrous body portion to reduce or prevent chemical bonding of carbon deposits or coking on the body portion at temperatures ranging from 200 to 400° C. The coating includes a fluoropolymer, such as polytetrafluoroethylene, fluorosilane, fluorocarbon, fluoroplastic resin, and/or perfluoroplastic, and may be hydrocarbon or silicone based. The coating also has a thickness of 25 microns to 1 millimeter. The coating can be disposed on an undercrown surface, ring grooves, ring lands, pin bosses, and/or skirt sections of the body portion.
    Type: Application
    Filed: February 21, 2018
    Publication date: August 22, 2019
    Inventors: WARRAN BOYD LINETON, TIMOTHY CHRISTOPHER VEZINA
  • Publication number: 20180216524
    Abstract: A component for an engine is provided. The component includes a thermal barrier coating applied to a body portion formed of metal, such as steel or another ferrous or iron-based material. According to one embodiment, a bond layer of a metal is applied to the body portion, followed by a mixed layer of metal and ceramic with a gradient structure, and then optionally a top layer of metal. The thermal barrier coating can also include a ceramic layer between the mixed layer and top layer, or as the outermost layer. The ceramic includes at least one of ceria, ceria stabilized zirconia, yttria, yttria stabilized zirconia, calcia stabilized zirconia, magnesia stabilized zirconia, and zirconia stabilized by another oxide. The thermal barrier coating can be applied by thermal spray. The thermal barrier coating preferably has a thickness less than 200 microns and a surface roughness Ra of not greater than 3 microns.
    Type: Application
    Filed: March 26, 2018
    Publication date: August 2, 2018
    Inventor: Warran Boyd LINETON
  • Publication number: 20180209375
    Abstract: A steel piston with anti-coking design features is provided. The piston includes an upper crown portion and a lower crown portion forming an outer cooling gallery therebetween. The outer cooling gallery is substantially closed except for an oil inlet, oil outlet, and optional oil passage(s) to a central cooling gallery. According to one embodiment, at least one anti-coking insert is disposed in the outer cooling gallery and sized to prevent escaping through the oil inlet or the oil outlet. For example, the insert(s) can comprise a helical coil, a plurality of steel balls, coil springs, or chips formed of polymer with abrasive filler. Alternatively, an outer gallery floor to the outer cooling gallery includes a plurality of anti-coking openings disposed sequentially in decreasing spaced relation from one another, or anti-coking openings with varying lengths.
    Type: Application
    Filed: January 25, 2017
    Publication date: July 26, 2018
    Inventors: MIGUEL AZEVEDO, WARRAN BOYD LINETON, GEOFFREY NEIL AINSWORTH
  • Patent number: 10018146
    Abstract: A piston capable of reducing undesirable “knock,” reducing hydrocarbon emissions, and providing more complete combustion, is provided. The piston includes a multilayer coating having a thickness of 500 microns or less disposed on an upper combustion surface. The coating includes a bond layer including nickel disposed on the upper combustion surface. A thermal barrier layer including a ceramic composition is disposed on the bond layer. A sealant layer formed of metal is disposed on the thermal barrier layer. A catalytic layer including at least one of platinum, ruthenium, rhodium, palladium, osmium, and iridium is disposed on the sealant layer. The catalytic layer can be disposed on select regions or the entire upper combustion surface to promote combustion through a catalyzed reaction.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: July 10, 2018
    Assignee: Federal-Mogul LLC
    Inventors: Miguel Azevedo, Warran Boyd Lineton
  • Publication number: 20180128166
    Abstract: A piston for an internal combustion engine is provided. The piston includes a thermal barrier coating applied to a crown formed of steel. According to one embodiment, a bond layer of a metal is applied to a combustion surface of the crown, followed by a mixed layer of metal and ceramic with a gradient structure, and then optionally a top layer of metal. The thermal barrier coating can also include a ceramic layer between the mixed layer and top layer, or as the outermost layer. The ceramic includes at least one of ceria, ceria stabilized zirconia, yttria, yttria stabilized zirconia, calcia stabilized zirconia, magnesia stabilized zirconia, and zirconia stabilized by another oxide. The thermal barrier coating is applied by thermal spray, HVOF, or wire arc spraying. The thermal barrier coating preferably has a thickness less than 200 microns and a surface roughness Ra of not greater than 3 microns.
    Type: Application
    Filed: December 20, 2017
    Publication date: May 10, 2018
    Inventor: WARRAN BOYD LINETON
  • Publication number: 20170335792
    Abstract: A vehicle internal combustion piston and method of construction thereof are provided. The piston includes piston body extending along a central longitudinal axis, having an upper combustion wall forming an upper combustion surface and an undercrown surface opposite the upper combustion surface. An annular ring belt region depends from the upper combustion surface, a pair of skirt panels depend from the ring belt region, and a pair of pin bosses depend from the undercrown surface to provide laterally spaced pin bores aligned along a pin bore axis for receipt of a wrist pin. The undercrown surface forms a central undercrown surface, and a portion of either an open outer cooling gallery, a sealed outer cooling gallery, or an outer galleryless region, wherein an insulating coating is applied to at least one of the portions of the undercrown surface.
    Type: Application
    Filed: May 18, 2017
    Publication date: November 23, 2017
    Inventors: Eduardo Matsuo, Warran Boyd Lineton
  • Publication number: 20170284334
    Abstract: A piston for an internal combustion engine and method of construction thereof are provided. The piston includes an upper crown formed at least in part by a first metal material and a thermally insulating insert. The upper crown has an upper wall forming an upper combustion surface and a ring belt region. The upper combustion surface is formed at least in part by the thermally insulating insert. The thermally insulating insert has a base surface with pores extending upwardly therein. The first metal material is infused and solidified in the pores, with the first metal material forming a first bonding surface. The piston further includes a body portion formed from a second metal material. The body portion provides pin bosses having coaxially aligned pin bores and diametrically opposite skirt portions. The body portion has a second bonding surface bonded to the first bonding surface of the first metal material.
    Type: Application
    Filed: April 5, 2017
    Publication date: October 5, 2017
    Inventors: Warran Boyd Lineton, Miguel Azevedo, Greg Salenbien
  • Publication number: 20170268457
    Abstract: A piston capable of reducing undesirable “knock,” reducing hydrocarbon emissions, and providing more complete combustion, is provided. The piston includes a multilayer coating having a thickness of 500 microns or less disposed on an upper combustion surface. The coating includes a bond layer including nickel disposed on the upper combustion surface. A thermal barrier layer including a ceramic composition is disposed on the bond layer. A sealant layer formed of metal is disposed on the thermal barrier layer. A catalytic layer including at least one of platinum, ruthenium, rhodium, palladium, osmium, and iridium is disposed on the sealant layer. The catalytic layer can be disposed on select regions or the entire upper combustion surface to promote combustion through a catalyzed reaction.
    Type: Application
    Filed: March 14, 2017
    Publication date: September 21, 2017
    Inventors: Miguel Azevedo, Warran Boyd Lineton
  • Publication number: 20170184052
    Abstract: A piston for a heavy duty diesel engine including a composite layer forming at least a portion of a combustion surface is provided. The composite layer has a thickness greater than 500 microns and includes a mixture of components typically used to form brake pads, such as a thermoset resin, an insulating component, strengthening fibers, and an impact toughening additive. According to one example, the thermoset resin is a phenolic resin, the insulating component is a ceramic, the strengthening fibers are graphite, and the impact toughening additive is an aramid pulp of fibrillated chopped synthetic fibers. The composite layer also has a thermal conductivity of 0.8 to 5 W/m·K. The body portion of the piston can include an undercut scroll thread to improve mechanical locking of the composite layer. The piston can also include a ceramic insert between the body portion and the composite layer.
    Type: Application
    Filed: December 23, 2016
    Publication date: June 29, 2017
    Inventors: Warran Boyd Lineton, Ross Allen Evers, Greg Salenbien
  • Publication number: 20170159604
    Abstract: A heavy duty piston for an internal combustion engine comprises a thermally conductive composition filling 10 to 90 vol. % of a sealed cooling gallery. The thermally conductive composition includes bismuth and/or tin. For example, the thermally conductive composition can be a single-phase binary mixture of bismuth and tin. The thermally conductive composition has improved thermal properties, for example a melting point around 139° C., a thermal conductivity around 22 W/m·K, and a thermal diffusivity around 1.43 E-5 m2/s. The thermally conductive composition is not reactive and does not include toxic or cost-prohibitive metals. During high temperature operation, as the piston reciprocates in the cylinder bore, the thermally conductive composition flows throughout the cooling gallery to dissipate heat away from the upper crown and thus improve efficiency of the engine.
    Type: Application
    Filed: November 30, 2016
    Publication date: June 8, 2017
    Inventors: Miguel AZEVEDO, Warran Boyd LINETON