Patents by Inventor Wayne I. Kinney

Wayne I. Kinney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230074063
    Abstract: A method includes forming a semiconductor structure. The structure includes a first material, a blocking material, a second material in an amorphous form, and a third material in an amorphous form. The blocking material is disposed between the first material and the second material. At least the second material and the third material each comprise silicon and/or germanium. The structure is exposed to a temperature above a crystallization temperature of the third material and below a crystallization temperature of the second material. Semiconductor structures, memory devices, and systems are also disclosed.
    Type: Application
    Filed: October 28, 2022
    Publication date: March 9, 2023
    Inventors: Michael Mutch, Manuj Nahar, Wayne I. Kinney
  • Patent number: 11532699
    Abstract: A method includes forming a semiconductor structure. The structure includes a first material, a blocking material, a second material in an amorphous form, and a third material in an amorphous form. The blocking material is disposed between the first material and the second material. At least the second material and the third material each comprise silicon and/or germanium. The structure is exposed to a temperature above a crystallization temperature of the third material and below a crystallization temperature of the second material. Semiconductor structures, memory devices, and systems are also disclosed.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: December 20, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Michael Mutch, Manuj Nahar, Wayne I. Kinney
  • Patent number: 11515331
    Abstract: Some embodiments include an integrated assembly having a semiconductor structure extending from a first wiring to a second wiring. A ferroelectric transistor includes a first transistor gate adjacent a first region of the semiconductor structure. A first non-ferroelectric transistor includes a second transistor gate adjacent a second region of the semiconductor structure. The second region of the semiconductor structure is between the first region of the semiconductor structure and the first wiring. A second non-ferroelectric transistor includes a third transistor gate adjacent a third region of the semiconductor structure. The third region of the semiconductor structure is between the first region of the semiconductor structure and the second wiring.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: November 29, 2022
    Assignee: Micron Technology, Inc.
    Inventor: Wayne I. Kinney
  • Publication number: 20220351768
    Abstract: A semiconductor structure includes an electrode, a ferroelectric material adjacent the electrode, the ferroelectric material comprising an oxide of at least one of hafnium and zirconium, the ferroelectric material doped with bismuth, and another electrode adjacent the ferroelectric material on an opposite side thereof from the first electrode. Related semiconductor structures, memory cells, semiconductor devices, electronic systems, and related methods are disclosed.
    Type: Application
    Filed: July 12, 2022
    Publication date: November 3, 2022
    Inventors: Albert Liao, Wayne I. Kinney, Yi Fang Lee, Manzar Siddik
  • Publication number: 20220320179
    Abstract: A magnetic cell core includes a seed region with a plurality of magnetic regions and a plurality of nonmagnetic regions thereover. The seed region provides a template that enables formation of an overlying nonmagnetic region with a microstructure that enables formation of an overlying free region with a desired crystal structure. The free region is disposed between two nonmagnetic regions, which may both be configured to induce surface/interface magnetic anisotropy. The structure is therefore configured to have a high magnetic anisotropy strength, a high energy barrier ratio, high tunnel magnetoresistance, a low programming current, low cell-to-cell electrical resistance variation, and low cell-to-cell variation in magnetic properties. Methods of fabrication, memory arrays, memory systems, and electronic systems are also disclosed.
    Type: Application
    Filed: June 13, 2022
    Publication date: October 6, 2022
    Inventors: Witold Kula, Wayne I. Kinney, Gurtej S. Sandhu
  • Patent number: 11398263
    Abstract: A semiconductor structure includes an electrode, a ferroelectric material adjacent the electrode, the ferroelectric material comprising an oxide of at least one of hafnium and zirconium, the ferroelectric material doped with bismuth, and another electrode adjacent the ferroelectric material on an opposite side thereof from the first electrode. Related semiconductor structures, memory cells, semiconductor devices, electronic systems, and related methods are disclosed.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: July 26, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Albert Liao, Wayne I. Kinney, Yi Fang Lee, Manzar Siddik
  • Patent number: 11393872
    Abstract: A magnetic cell core includes a seed region with a plurality of magnetic regions and a plurality of nonmagnetic regions thereover. The seed region provides a template that enables formation of an overlying nonmagnetic region with a microstructure that enables formation of an overlying free region with a desired crystal structure. The free region is disposed between two nonmagnetic regions, which may both be configured to induce surface/interface magnetic anisotropy. The structure is therefore configured to have a high magnetic anisotropy strength, a high energy barrier ratio, high tunnel magnetoresistance, a low programming current, low cell-to-cell electrical resistance variation, and low cell-to-cell variation in magnetic properties. Methods of fabrication, memory arrays, memory systems, and electronic systems are also disclosed.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: July 19, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Witold Kula, Wayne I. Kinney, Gurtej S. Sandhu
  • Patent number: 11158670
    Abstract: Memory cells are disclosed. Magnetic regions within the memory cells include an alternating structure of magnetic sub-regions and coupler sub-regions. The coupler material of the coupler sub-regions antiferromagnetically couples neighboring magnetic sub-regions and effects or encourages a vertical magnetic orientation exhibited by the neighboring magnetic sub-regions. Neighboring magnetic sub-regions, spaced from one another by a coupler sub-region, exhibit oppositely directed magnetic orientations. The magnetic and coupler sub-regions may each be of a thickness tailored to form the magnetic region in a compact structure. Interference between magnetic dipole fields emitted from the magnetic region on switching of a free region in the memory cell may be reduced or eliminated. Also disclosed are semiconductor device structures, spin torque transfer magnetic random-access memory (STT-MRAM) systems, and methods of fabrication.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: October 26, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Wayne I. Kinney, Witold Kula, Stephen J. Kramer
  • Publication number: 20200395382
    Abstract: Some embodiments include an integrated assembly having a semiconductor structure extending from a first wiring to a second wiring. A ferroelectric transistor includes a first transistor gate adjacent a first region of the semiconductor structure. A first non-ferroelectric transistor includes a second transistor gate adjacent a second region of the semiconductor structure. The second region of the semiconductor structure is between the first region of the semiconductor structure and the first wiring. A second non-ferroelectric transistor includes a third transistor gate adjacent a third region of the semiconductor structure. The third region of the semiconductor structure is between the first region of the semiconductor structure and the second wiring.
    Type: Application
    Filed: August 26, 2020
    Publication date: December 17, 2020
    Applicant: Micron Technology, Inc.
    Inventor: Wayne I. Kinney
  • Publication number: 20200349994
    Abstract: A semiconductor structure includes an electrode, a ferroelectric material adjacent the electrode, the ferroelectric material comprising an oxide of at least one of hafnium and zirconium, the ferroelectric material doped with bismuth, and another electrode adjacent the ferroelectric material on an opposite side thereof from the first electrode. Related semiconductor structures, memory cells, semiconductor devices, electronic systems, and related methods are disclosed.
    Type: Application
    Filed: July 15, 2020
    Publication date: November 5, 2020
    Inventors: Albert Liao, Wayne I. Kinney, Yi Fang Lee, Manzar Siddik
  • Patent number: 10790304
    Abstract: Some embodiments include an integrated assembly having a semiconductor structure extending from a first wiring to a second wiring. A ferroelectric transistor includes a first transistor gate adjacent a first region of the semiconductor structure. A first non-ferroelectric transistor includes a second transistor gate adjacent a second region of the semiconductor structure. The second region of the semiconductor structure is between the first region of the semiconductor structure and the first wiring. A second non-ferroelectric transistor includes a third transistor gate adjacent a third region of the semiconductor structure. The third region of the semiconductor structure is between the first region of the semiconductor structure and the second wiring.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: September 29, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Wayne I. Kinney
  • Publication number: 20200303493
    Abstract: A method includes forming a semiconductor structure. The structure includes a first material, a blocking material, a second material in an amorphous form, and a third material in an amorphous form. The blocking material is disposed between the first material and the second material. At least the second material and the third material each comprise silicon and/or germanium. The structure is exposed to a temperature above a crystallization temperature of the third material and below a crystallization temperature of the second material. Semiconductor structures, memory devices, and systems are also disclosed.
    Type: Application
    Filed: June 10, 2020
    Publication date: September 24, 2020
    Inventors: Michael Mutch, Manuj Nahar, Wayne I. Kinney
  • Patent number: 10748594
    Abstract: Methods, systems, and devices for enabling fast pulse operation are described. A threshold voltage of a selection component and a requisite duration for a voltage applied to a selection component to reach a threshold voltage in response to a voltage generated by an external source may be determined. The threshold voltage may correspond to a voltage at which the selection component is configured to release electric charge. A voltage may then be generated and applied to an access line that is in electronic communication with the selection component and a memory cell for at least the requisite duration. Electric charge may be stored at the selection component during the requisite duration and transferred to memory cell after the requisite duration.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: August 18, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Wayne I. Kinney
  • Patent number: 10726899
    Abstract: A semiconductor structure includes an electrode, a ferroelectric material adjacent the electrode, the ferroelectric material comprising an oxide of at least one of hafnium and zirconium, the ferroelectric material doped with bismuth, and another electrode adjacent the ferroelectric material on an opposite side thereof from the first electrode. Related semiconductor structures, memory cells, semiconductor devices, electronic systems, and related methods are disclosed.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: July 28, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Albert Liao, Wayne I. Kinney, Yi Fang Lee, Manzar Siddik
  • Patent number: 10707298
    Abstract: A method includes forming a semiconductor structure. The structure includes a first material, a blocking material, a second material in an amorphous form, and a third material in an amorphous form. The blocking material is disposed between the first material and the second material. At least the second material and the third material each comprise silicon and/or germanium. The structure is exposed to a temperature above a crystallization temperature of the third material and below a crystallization temperature of the second material. Semiconductor structures, memory devices, and systems are also disclosed.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: July 7, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Michael Mutch, Manuj Nahar, Wayne I. Kinney
  • Publication number: 20200194497
    Abstract: Memory cells are disclosed. Magnetic regions within the memory cells include an alternating structure of magnetic sub-regions and coupler sub-regions. The coupler material of the coupler sub-regions antiferromagnetically couples neighboring magnetic sub-regions and effects or encourages a vertical magnetic orientation exhibited by the neighboring magnetic sub-regions. Neighboring magnetic sub-regions, spaced from one another by a coupler sub-region, exhibit oppositely directed magnetic orientations. The magnetic and coupler sub-regions may each be of a thickness tailored to form the magnetic region in a compact structure. Interference between magnetic dipole fields emitted from the magnetic region on switching of a free region in the memory cell may be reduced or eliminated. Also disclosed are semiconductor device structures, spin torque transfer magnetic random-access memory (STT-MRAM) systems, and methods of fabrication.
    Type: Application
    Filed: February 20, 2020
    Publication date: June 18, 2020
    Inventors: Wayne I. Kinney, Witold Kula, Stephen J. Kramer
  • Publication number: 20200119090
    Abstract: A magnetic cell core includes a seed region with a plurality of magnetic regions and a plurality of nonmagnetic regions thereover. The seed region provides a template that enables formation of an overlying nonmagnetic region with a microstructure that enables formation of an overlying free region with a desired crystal structure. The free region is disposed between two nonmagnetic regions, which may both be configured to induce surface/interface magnetic anisotropy. The structure is therefore configured to have a high magnetic anisotropy strength, a high energy barrier ratio, high tunnel magnetoresistance, a low programming current, low cell-to-cell electrical resistance variation, and low cell-to-cell variation in magnetic properties. Methods of fabrication, memory arrays, memory systems, and electronic systems are also disclosed.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Inventors: Witold Kula, Wayne I. Kinney, Gurtej S. Sandhu
  • Patent number: 10586830
    Abstract: Memory cells are disclosed. Magnetic regions within the memory cells include an alternating structure of magnetic sub-regions and coupler sub-regions. The coupler material of the coupler sub-regions antiferromagnetically couples neighboring magnetic sub-regions and effects or encourages a vertical magnetic orientation exhibited by the neighboring magnetic sub-regions. Neighboring magnetic sub-regions, spaced from one another by a coupler sub-region, exhibit oppositely directed magnetic orientations. The magnetic and coupler sub-regions may each be of a thickness tailored to form the magnetic region in a compact structure. Interference between magnetic dipole fields emitted from the magnetic region on switching of a free region in the memory cell may be reduced or eliminated. Also disclosed are semiconductor device structures, spin torque transfer magnetic random-access memory (STT-MRAM) systems, and methods of fabrication.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: March 10, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Wayne I. Kinney, Witold Kula, Stephen J. Kramer
  • Publication number: 20200075713
    Abstract: A method includes forming a semiconductor structure. The structure includes a first material, a blocking material, a second material in an amorphous form, and a third material in an amorphous form. The blocking material is disposed between the first material and the second material. At least the second material and the third material each comprise silicon and/or germanium. The structure is exposed to a temperature above a crystallization temperature of the third material and below a crystallization temperature of the second material. Semiconductor structures, memory devices, and systems are also disclosed.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 5, 2020
    Inventors: Michael Mutch, Manuj Nahar, Wayne I. Kinney
  • Publication number: 20200035704
    Abstract: Some embodiments include an integrated assembly having a semiconductor structure extending from a first wiring to a second wiring. A ferroelectric transistor includes a first transistor gate adjacent a first region of the semiconductor structure. A first non-ferroelectric transistor includes a second transistor gate adjacent a second region of the semiconductor structure. The second region of the semiconductor structure is between the first region of the semiconductor structure and the first wiring. A second non-ferroelectric transistor includes a third transistor gate adjacent a third region of the semiconductor structure. The third region of the semiconductor structure is between the first region of the semiconductor structure and the second wiring.
    Type: Application
    Filed: July 26, 2018
    Publication date: January 30, 2020
    Applicant: Micron Technology, Inc.
    Inventor: Wayne I. Kinney