Patents by Inventor Wei-Cheng Tian

Wei-Cheng Tian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090166203
    Abstract: A microchip for capillary electrophoresis is provided. The microchip comprises an injection channel and a separation channel configured to receive a sample through a sample well disposed on a first end of the separation channel; wherein the injection channel and the separation channel intersect to form a ‘T’ junction. The microchip further comprises a first valve disposed adjacent to the ‘T’ junction and on the separation channel and a second valve disposed at the ‘T’ junction. The second valve is a two-way valve. A sample plug is injected into an area between the ‘T’ junction and a second end of the separation channel.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 2, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Wei-Cheng Tian, Erin Jean Finehout, Li Zhu, Jun Xie, Shashi Thutupalli
  • Patent number: 7547953
    Abstract: Gallium oxide films for sensing gas comprise Ga2O3 and have a porosity of at least about 30%. Such films can be formed by coating a substrate with a solution comprising: a gallium salt and a porogen comprising an organic compound comprising a hydrophilic chain and a hydrophobic chain; and heating the substrate to a temperature in the range from about 400° C. to about 600° C. while exposing the substrate to an oxygen-containing source to convert the gallium salt to a gallium oxide.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: June 16, 2009
    Assignee: General Electric Company
    Inventors: Anthony Yu-Chung Ku, Steven Alfred Tysoe, Vinayak Tilak, Peter Micah Sandvik, Sergio Paulo Martins Loureiro, James Anthony Ruud, Anis Zribi, Wei-Cheng Tian
  • Publication number: 20090148967
    Abstract: A method for making a testable sensor assembly is provided. The method includes forming a first sensor array on a first substrate having a first side and a second side, wherein the first sensor array is formed on the first side of the first substrate, coupling a first semiconductor wafer having a first side and a second side to the first sensor array, wherein the first side of the first semiconductor wafer is coupled to the first sensor array, thinning one of the second side of the first substrate or the second side of the first semiconductor wafer, and testing the first sensor array to identify operational and non-operational units in the testable sensor assembly before integration of the sensor assembly with interface electronics.
    Type: Application
    Filed: December 6, 2007
    Publication date: June 11, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Robert Gideon Wodnicki, Stacey Joy Kennerly, Wei-Cheng Tian, Kevin Matthew Durocher, David Martin Mills, Charles Gerard Woychik, Lowell Scott Smith
  • Patent number: 7545012
    Abstract: A capacitive micromachined ultrasound transducer (cMUT) cell is presented. The cMUT cell includes a lower electrode. Furthermore, the cMUT cell includes a diaphragm disposed adjacent to the lower electrode such that a gap having a first gap width is formed between the diaphragm and the lower electrode, wherein the diaphragm comprises one of a first epitaxial layer or a first polysilicon layer. In addition, a stress reducing material is disposed in the first epitaxial layer.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: June 9, 2009
    Assignee: General Electric Company
    Inventors: Lowell Scott Smith, David Martin Mills, Jeffrey Bernard Fortin, Wei-Cheng Tian, John Robert Logan
  • Publication number: 20090071832
    Abstract: A microfluidic device with a vertical injection aperture is provided. The microfluidic device comprises a separation channel, an injection aperture disposed adjacent to and in fluid communication with the separation channel. The microfluidic device further comprises a semi-permeable filter disposed adjacent to the injection aperture, wherein the filter is configured to preconcentrate a sample in the injection aperture to form a preconcentrated sample plug during an injection operation, and wherein the sample plug flows downwardly from the injection aperture to the separation channel during an electrophoresis operation.
    Type: Application
    Filed: September 19, 2007
    Publication date: March 19, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jun Xie, Shashi Thutupalli, Stacey Joy Kennerly, Wei-Cheng Tian, Erin Jean Finehout, Li Zhu, Oliver Charles Boomhower
  • Patent number: 7495430
    Abstract: A micro-electromechanical system (MEMS) current sensor is described as including a first conductor, a magnetic field shaping component for shaping a magnetic field produced by a current in the first conductor, and a MEMS-based magnetic field sensing component including a magneto-MEMS component for sensing the shaped magnetic field and, in response thereto, providing an indication of the current in the first conductor. A method for sensing a current using MEMS is also described as including shaping a magnetic field produced with a current in a first conductor, sensing the shaped magnetic field with a MEMS-based magnetic field sensing component having a magneto-MEMS component magnetic field sensing circuit, and providing an indication of the current in the first conductor.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: February 24, 2009
    Assignee: General Electric Company
    Inventors: Ertugrul Berkcan, Christopher James Kapusta, Glenn Scott Claydon, Anis Zribi, Laura Jean Meyer, Wei-Cheng Tian
  • Patent number: 7466121
    Abstract: A micro-electromechanical system (MEMS) current sensor is described as including a first conductor, a magnetic field shaping component for shaping a magnetic field produced by a current in the first conductor, and a MEMS-based magnetic field sensing component including a magneto-MEMS component for sensing the shaped magnetic field and, in response thereto, providing an indication of the current in the first conductor. A method for sensing a current using MEMS is also described as including shaping a magnetic field produced with a current in a first conductor, sensing the shaped magnetic field with a MEMS-based magnetic field sensing component having a magneto-MEMS component magnetic field sensing circuit, and providing an indication of the current in the first conductor.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: December 16, 2008
    Assignee: General Electric Company
    Inventors: Ertugrul Berkcan, Christopher James Kapusta, Glenn Scott Claydon, Anis Zribi, Laura Jean Meyer, Wei-Cheng Tian
  • Publication number: 20080296708
    Abstract: The present invention relates to a method for making an integrated sensor comprising providing a sensor array fabricated on a top surface of a bulk silicon wafer having a top surface and a bottom surface, and comprising a plurality of sensors fabricated on the top surface of the bulk silicon wafer. The method further comprises coupling an SOI wafer to the top surface of the bulk silicon wafer, thinning the back surface of the bulk silicon wafer, coupling a plurality of integrated circuit die to the back surface of the bulk silicon wafer, and removing the SOI wafer from the top surface of the bulk silicon wafer.
    Type: Application
    Filed: May 31, 2007
    Publication date: December 4, 2008
    Inventors: Robert Gideon Wodnicki, Wei-Cheng Tian, Kevin Matthew Durocher, Charles Gerard Woychik, Rayette Ann Fisher, Stacey Joy Kennerly, Lowell Scott Smith, Douglas Glenn Wildes
  • Publication number: 20080180209
    Abstract: Gallium oxide films for sensing gas comprise Ga2O3 and have a porosity of at least about 30%. Such films can be formed by coating a substrate with a solution comprising: a gallium salt and a porogen comprising an organic compound comprising a hydrophilic chain and a hydrophobic chain; and heating the substrate to a temperature in the range from about 400° C. to about 600° C. while exposing the substrate to an oxygen-containing source to convert the gallium salt to a gallium oxide.
    Type: Application
    Filed: January 29, 2007
    Publication date: July 31, 2008
    Inventors: Anthony Yu-Chung Ku, Steven Alfred Tysoe, Vinayak Tilak, Peter Micah Sandvik, Sergio Paulo Martins Loureiro, James Anthony Ruud, Anis Zribi, Wei-Cheng Tian
  • Patent number: 7365437
    Abstract: A method for forming smooth walled, prismatically-profiled through-wafer vias and articles formed through the method. An etch stop material is provided on a wafer, which may be a <110> silicon wafer. A mask material is provided on the etch stop material and patterned in such a way as to lead to the formation of vias that have at least one pair of opposing side walls that run parallel to a <111> plane in the wafer. A wet etchant, such as potassium hydroxide, is used to etch vias in the wafer. The use of a wet etchant leads to the formation of smooth side walls. This method allows an aspect ratio of height versus width of the vias of greater than 75 to 1.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: April 29, 2008
    Assignee: General Electric Company
    Inventors: Kanakasabapathi Subramanian, Jeffrey Bernard Fortin, Wei-Cheng Tian
  • Publication number: 20080070338
    Abstract: A micro-electromechanical system (MEMS) based current & magnetic field sensor includes a MEMS-based magnetic field sensing component having a capacitive magneto-MEMS component, a compensator and an output component for sensing magnetic fields and for providing, in response thereto, an indication of the current present in a respective conductor to be measured. In one embodiment, first and second mechanical sense components are electrically conductive and operate to sense a change in a capacitance between the mechanical sense components in response to a mechanical indicator from a magnetic-to-mechanical converter.
    Type: Application
    Filed: November 14, 2007
    Publication date: March 20, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Anis Zribi, Glenn Claydon, Christopher Kapusta, Laura Meyer, Ertugal Berkcan, Wei-Cheng Tian
  • Patent number: 7315161
    Abstract: A micro-electromechanical system (MEMS) based current & magnetic field sensor includes a MEMS-based magnetic field sensing component having a capacitive magneto-MEMS component, a compensator and an output component for sensing magnetic fields and for providing, in response thereto, an indication of the current present in a respective conductor to be measured. In one embodiment, first and second mechanical sense components are electrically conductive and operate to sense a change in a capacitance between the mechanical sense components in response to a mechanical indicator from a magnetic-to-mechanical converter.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: January 1, 2008
    Assignee: General Electric Company
    Inventors: Anis Zribi, Glenn Scott Claydon, Christopher James Kapusta, Laura Jean Meyer, Ertugrul Berkcan, Wei-Cheng Tian
  • Patent number: 7293462
    Abstract: A device comprising an array of sensors and a multiplicity of bus lines, each sensor being electrically connected to a respective bus line and comprising a respective multiplicity of groups of micromachined sensor cells, the sensor cell groups of a particular sensor being electrically coupled to each other via the bus line to which that sensor is connected, each sensor cell group comprising a respective multiplicity of micromachined sensor cells that are electrically interconnected to each other and not switchably disconnectable from each other, the device further comprising means for isolating any one of the sensor cell groups from its associated bus line and in response to any one of the micromachined sensor cells of that sensor cell group being short-circuited to ground. In one implementation, the isolating means comprise a multiplicity of fuses.
    Type: Grant
    Filed: January 4, 2005
    Date of Patent: November 13, 2007
    Assignee: General Electric Company
    Inventors: Warren Lee, David Martin Mills, Glenn Scott Claydon, Kenneth Wayne Rigby, Wei-Cheng Tian, Ye-Ming Li, Jie Sun, Lowell Scott Smith, Stanley Chienwu Chu, Sam Yie-Sum Wong, Hyon-Jin Kwon
  • Publication number: 20070224591
    Abstract: A microsampler disc for use in the analysis of agents is described as including a plurality of microstructures configured and spaced to promote movement of a fluidic medium containing agents radially outwardly and promote filtering of one species of agents from other species of agents. An analysis system using the microsampler disc is also described. A method for separating one species of agent from one or more other species of agents is described as including introducing a fluidic medium containing at least one species of agents to a microsampler disc having a plurality of microstructures, rotating the microsampler disc to promote movement of the fluidic medium outwardly, collecting the at least one species of agent in a specific set of detection zones, and analyzing the at least one species of agent.
    Type: Application
    Filed: March 27, 2006
    Publication date: September 27, 2007
    Inventors: John Gui, Wei-Cheng Tian, Atanu Phukan, Shashi Thutupalli, Victor Samper
  • Publication number: 20070180916
    Abstract: A method of making a capacitive micromachined ultrasound transducer cell is provided. The method includes providing a carrier substrate, where the carrier substrate comprises glass. The step of providing the glass substrate may include forming vias in the glass substrate. Further, the method includes providing a membrane such that at least one of the carrier substrate, or the membrane comprises support posts, where the support posts are configured to define a cavity depth. The method further includes bonding the membrane to the carrier substrate by using the support posts, where the carrier substrate, the membrane and the support posts define an acoustic cavity.
    Type: Application
    Filed: February 9, 2006
    Publication date: August 9, 2007
    Inventors: Wei-Cheng Tian, Lowell Smith, Ching-Yeu Wei, Robert Wodnicki, Rayette Fisher, David Mills, Stanley Chu, Hyon-Jin Kwon
  • Patent number: 7253615
    Abstract: According to some embodiments, an apparatus includes a movable portion through which a sensing current is to be conducted. The movable portion might comprise, for example, a beam or plate suspended above a well in a Microelectromechanical System (MEMS) substrate. The apparatus may also include a sensing portion coupled to the movable portion, and the movable portion and/or sensing portion may move in a direction normal to the substrate in response to a magnetic field.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: August 7, 2007
    Assignee: General Electric Company
    Inventors: Ertugrul Berkcan, Wei-Cheng Tian
  • Publication number: 20070052410
    Abstract: A micro-electromechanical system (MEMS) current sensor is described as including a first conductor, a magnetic field shaping component for shaping a magnetic field produced by a current in the first conductor, and a MEMS-based magnetic field sensing component including a magneto-MEMS component for sensing the shaped magnetic field and, in response thereto, providing an indication of the current in the first conductor. A method for sensing a current using MEMS is also described as including shaping a magnetic field produced with a current in a first conductor, sensing the shaped magnetic field with a MEMS-based magnetic field sensing component having a magneto-MEMS component magnetic field sensing circuit, and providing an indication of the current in the first conductor.
    Type: Application
    Filed: August 18, 2006
    Publication date: March 8, 2007
    Inventors: Ertugrul Berkcan, Christopher Kapusta, Glenn Claydon, Anis Zribi, Laura Meyer, Wei-Cheng Tian
  • Publication number: 20070040547
    Abstract: A micro-electromechanical system (MEMS) current sensor is described as including a first conductor, a magnetic field shaping component for shaping a magnetic field produced by a current in the first conductor, and a MEMS-based magnetic field sensing component including a magneto-MEMS component for sensing the shaped magnetic field and, in response thereto, providing an indication of the current in the first conductor. A method for sensing a current using MEMS is also described as including shaping a magnetic field produced with a current in a first conductor, sensing the shaped magnetic field with a MEMS-based magnetic field sensing component having a magneto-MEMS component magnetic field sensing circuit, and providing an indication of the current in the first conductor.
    Type: Application
    Filed: August 18, 2006
    Publication date: February 22, 2007
    Inventors: Ertugrul Berkcan, Christopher Kapusta, Glenn Claydon, Anis Zribi, Laura Meyer, Wei-Cheng Tian
  • Patent number: 7112951
    Abstract: A micro-electromechanical system (MEMS) current sensor is described as including a first conductor, a magnetic field shaping component for shaping a magnetic field produced by a current in the first conductor, and a MEMS-based magnetic field sensing component including a magneto-MEMS component for sensing the shaped magnetic field and, in response thereto, providing an indication of the current in the first conductor. A method for sensing a current using MEMS is also described as including shaping a magnetic field produced with a current in a first conductor, sensing the shaped magnetic field with a MEMS-based magnetic field sensing component having a magneto-MEMS component magnetic field sensing circuit, and providing an indication of the current in the first conductor.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: September 26, 2006
    Assignee: General Electric Company
    Inventors: Ertugrul Berkcan, Christopher James Kapusta, Glenn Scott Claydon, Anis Zribi, Laura Jean Meyer, Wei-Cheng Tian
  • Patent number: 7104113
    Abstract: The invention provides a miniaturized sensor device including a thin film membrane having a first surface and a second surface, one or more resistive thin film heater/thermometer devices disposed directly or indirectly adjacent to the first surface of the thin film membrane, and a frame disposed directly or indirectly adjacent to the second surface of the thin film membrane, wherein one or more internal surfaces of the frame define at least one cell having at least one opening. The sensor device also includes a thin film layer disposed directly or indirectly adjacent to the frame. The sensor device further includes a sensing layer disposed directly or indirectly adjacent to the thin film membrane.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: September 12, 2006
    Assignee: General Electric Company
    Inventors: Anis Zribi, Wei-Cheng Tian, Gerald Schultz, Aaron Jay Knobloch