Patents by Inventor Wei-Jen Liu

Wei-Jen Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240162109
    Abstract: In an embodiment, a package includes an integrated circuit device attached to a substrate; an encapsulant disposed over the substrate and laterally around the integrated circuit device, wherein a top surface of the encapsulant is coplanar with the top surface of the integrated circuit device; and a heat dissipation structure disposed over the integrated circuit device and the encapsulant, wherein the heat dissipation structure includes a spreading layer disposed over the encapsulant and the integrated circuit device, wherein the spreading layer includes a plurality of islands, wherein at least a portion of the islands are arranged as lines extending in a first direction in a plan view; a plurality of pillars disposed over the islands of the spreading layer; and nanostructures disposed over the pillars.
    Type: Application
    Filed: January 10, 2023
    Publication date: May 16, 2024
    Inventors: Hung-Yi Kuo, Chen-Hua Yu, Kuo-Chung Yee, Yu-Jen Lien, Ke-Han Shen, Wei-Kong Sheng, Chung-Shi Liu, Szu-Wei Lu, Tsung-Fu Tsai, Chung-Ju Lee, Chih-Ming Ke
  • Patent number: 11982866
    Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a stopping assembly. The fixed assembly has a main axis. The movable assembly is configured to connect an optical element, and the movable assembly is movable relative to the fixed assembly. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The stopping assembly is configured to limit the movement of the movable assembly relative to the fixed assembly within a range of motion.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: May 14, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Liang-Ting Ho, Chen-Er Hsu, Yi-Liang Chan, Fu-Lai Tseng, Fu-Yuan Wu, Chen-Chi Kuo, Ying-Jen Wang, Wei-Han Hsia, Yi-Hsin Tseng, Wen-Chang Lin, Chun-Chia Liao, Shou-Jen Liu, Chao-Chun Chang, Yi-Chieh Lin, Shang-Yu Hsu, Yu-Huai Liao, Shih-Wei Hung, Sin-Hong Lin, Kun-Shih Lin, Yu-Cheng Lin, Wen-Yen Huang, Wei-Jhe Shen, Chih-Shiang Wu, Sin-Jhong Song, Che-Hsiang Chiu, Sheng-Chang Lin
  • Publication number: 20240153842
    Abstract: A semiconductor structure includes a die embedded in a molding material, the die having die connectors on a first side; a first redistribution structure at the first side of the die, the first redistribution structure being electrically coupled to the die through the die connectors; a second redistribution structure at a second side of the die opposing the first side; and a thermally conductive material in the second redistribution structure, the die being interposed between the thermally conductive material and the first redistribution structure, the thermally conductive material extending through the second redistribution structure, and the thermally conductive material being electrically isolated.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 9, 2024
    Inventors: Hao-Jan Pei, Wei-Yu Chen, Chia-Shen Cheng, Chih-Chiang Tsao, Cheng-Ting Chen, Chia-Lun Chang, Chih-Wei Lin, Hsiu-Jen Lin, Ching-Hua Hsieh, Chung-Shi Liu
  • Publication number: 20240153895
    Abstract: Semiconductor dies of a semiconductor die package are directly bonded, and a top metal region may be formed over the semiconductor dies. A plurality of conductive terminals may be formed over the top metal region. The conductive terminals are formed of copper (Cu) or another material that enables low-temperature deposition process techniques, such as electroplating, to be used to form the conductive terminal. In this way, the conductive terminals of the semiconductor die packages described herein may be formed at a relatively low temperature. This reduces the likelihood of thermal deformation of semiconductor dies in the semiconductor die packages. The reduced thermal deformation reduces the likelihood of warpage, breakage, and/or other types of damage to the semiconductor dies of the semiconductor die packages, which may increase performance and/or increase yield of semiconductor die packages.
    Type: Application
    Filed: April 19, 2023
    Publication date: May 9, 2024
    Inventors: Harry-HakLay CHUANG, Wei-Cheng WU, Chung-Jen HUANG, Yung Chun TU, Chien Lin LIU, Shun-Kuan LIN, Ping-tzu CHEN
  • Publication number: 20240136317
    Abstract: According to an exemplary embodiment, a substrate having a first area and a second area is provided. The substrate includes a plurality of pads. Each of the pads has a pad size. The pad size in the first area is larger than the pad size in the second area.
    Type: Application
    Filed: January 3, 2024
    Publication date: April 25, 2024
    Inventors: Wei-Hung Lin, Hsiu-Jen Lin, Ming-Da Cheng, Yu-Min Liang, Chen-Shien Chen, Chung-Shi Liu
  • Publication number: 20240136346
    Abstract: A semiconductor die package includes an inductor-capacitor (LC) semiconductor die that is directly bonded with a logic semiconductor die. The LC semiconductor die includes inductors and capacitors that are integrated into a single die. The inductors and capacitors of the LC semiconductor die may be electrically connected with transistors and other logic components on the logic semiconductor die to form a voltage regulator circuit of the semiconductor die package. The integration of passive components (e.g., the inductors and capacitors) of the voltage regulator circuit into a single semiconductor die reduces signal propagation distances in the voltage regulator circuit, which may increase the operating efficiency of the voltage regulator circuit, may reduce the formfactor for the semiconductor die package, may reduce parasitic capacitance and/or may reduce parasitic inductance in the voltage regulator circuit (thereby improving the performance of the voltage regulator circuit), among other examples.
    Type: Application
    Filed: April 17, 2023
    Publication date: April 25, 2024
    Inventors: Chien Hung LIU, Yu-Sheng CHEN, Yi Ching ONG, Hsien Jung CHEN, Kuen-Yi CHEN, Kuo-Ching HUANG, Harry-HakLay CHUANG, Wei-Cheng WU, Yu-Jen WANG
  • Publication number: 20240134147
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion used for connecting an optical element, a fixed portion, and a driving assembly used for driving the movable portion to move relative to the fixed portion. The movable portion is movable relative to the fixed portion.
    Type: Application
    Filed: October 19, 2023
    Publication date: April 25, 2024
    Inventors: Po-Xiang ZHUANG, Chen-Hung CHAO, Wei-Jhe SHEN, Shou-Jen LIU, Kun-Shih LIN, Yi-Ho CHEN
  • Patent number: 11942464
    Abstract: In an embodiment, a method includes: aligning a first package component with a second package component, the first package component having a first region and a second region, the first region including a first conductive connector, the second region including a second conductive connector; performing a first laser shot on a first portion of a top surface of the first package component, the first laser shot reflowing the first conductive connector of the first region, the first portion of the top surface of the first package component completely overlapping the first region; and after performing the first laser shot, performing a second laser shot on a second portion of the top surface of the first package component, the second laser shot reflowing the second conductive connector of the second region, the second portion of the top surface of the first package component completely overlapping the second region.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Jan Pei, Hsiu-Jen Lin, Wei-Yu Chen, Philip Yu-Shuan Chung, Chia-Shen Cheng, Kuei-Wei Huang, Ching-Hua Hsieh, Chung-Shi Liu, Chen-Hua Yu
  • Publication number: 20240094498
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion used for connecting an optical element, a fixed portion, and a driving assembly used for driving the movable portion to move relative to the fixed portion. The movable portion is movable relative to the fixed portion.
    Type: Application
    Filed: September 14, 2023
    Publication date: March 21, 2024
    Inventors: Po-Xiang ZHUANG, Chen-Hung CHAO, Wei-Jhe SHEN, Shou-Jen LIU, Kun-Shih LIN, Yi-Ho CHEN
  • Publication number: 20240088026
    Abstract: A semiconductor device according to embodiments of the present disclosure includes a first die including a first bonding layer and a second die including a second hybrid bonding layer. The first bonding layer includes a first dielectric layer and a first metal coil embedded in the first dielectric layer. The second bonding layer includes a second dielectric layer and a second metal coil embedded in the second dielectric layer. The second hybrid bonding layer is bonded to the first hybrid bonding layer such that the first dielectric layer is bonded to the second dielectric layer and the first metal coil is bonded to the second metal coil.
    Type: Application
    Filed: January 17, 2023
    Publication date: March 14, 2024
    Inventors: Yi Ching Ong, Wei-Cheng Wu, Chien Hung Liu, Harry-Haklay Chuang, Yu-Sheng Chen, Yu-Jen Wang, Kuo-Ching Huang
  • Publication number: 20240077744
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion used for connecting an optical element, a fixed portion, and a driving assembly used for driving the movable portion to move relative to the fixed portion. The movable portion is movable relative to the fixed portion.
    Type: Application
    Filed: September 7, 2023
    Publication date: March 7, 2024
    Inventors: Po-Xiang ZHUANG, Chen-Hung CHAO, Wei-Jhe SHEN, Shou-Jen LIU, Kun-Shih LIN, Yi-Ho CHEN
  • Publication number: 20240077697
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion used for connecting an optical element, a fixed portion, and a driving assembly used for driving the movable portion to move relative to the fixed portion. The movable portion is movable relative to the fixed portion.
    Type: Application
    Filed: September 7, 2023
    Publication date: March 7, 2024
    Inventors: Po-Xiang ZHUANG, Chen-Hung CHAO, Wei-Jhe SHEN, Shou-Jen LIU, Kun-Shih LIN, Yi-Ho CHEN
  • Publication number: 20230327212
    Abstract: A lithium battery includes a positive electrode, wherein the positive electrode includes a positive electrode sheet and a protective layer. The positive electrode sheet includes an active substance, a conductive additive, a binder, a current collector, or a combination thereof. The protective layer is disposed on the positive electrode sheet. A material of the protective layer is titanium nitride. A manufacturing method of a lithium battery is also provided.
    Type: Application
    Filed: May 24, 2022
    Publication date: October 12, 2023
    Applicant: Chung Yuan Christian University
    Inventors: Wei-Jen Liu, Tzu-Hsin Tseng
  • Publication number: 20210360838
    Abstract: The present disclosure provides a composite material for shielding or absorbing an electromagnetic wave and a method for manufacturing the same. The composite material includes an electromagnetic absorbing material including a silicon carbide and a conductive material including a two-dimensional carbon material containing at least one of a graphite sheet and a graphene sheet.
    Type: Application
    Filed: June 24, 2020
    Publication date: November 18, 2021
    Applicant: GET Green Energy Corp., Ltd.
    Inventors: Wei-Jen Liu, Hsi-Nien Ho, I-Ting Hsieh, Cheng-Che Hsieh, Yung-Liang Ke, Yun Shuan Chu
  • Publication number: 20210242462
    Abstract: A method of manufacturing biomass hard carbon contains: step 1: mixing a carbon source and a nanoscale powder so as to obtain a precursor; step 2: disposing the precursor in an oxygen-free environment; step 3: carbonizing the precursor by a heating process so as to make the precursor be transformed into a hard carbon mixture; step 4: rinsing the hard carbon mixture by an acid solution, such that the hard carbon mixture has a pH value less than 0.5; step 5: modulating the pH value to be greater than 6 by using a pure water to rinse the hard carbon mixture; and step 6: producing a biomass hard carbon by drying the hard carbon mixture.
    Type: Application
    Filed: March 30, 2020
    Publication date: August 5, 2021
    Inventors: Tzu-Hsien Hsieh, Haw-Yeu Chuang, Yang-Chuang Chang, Wei-Jen Liu, Rasu Muruganantham
  • Publication number: 20210143405
    Abstract: The invention provides a manufacturing method of a negative electrode material for a secondary battery. The manufacturing method includes following steps. A silicon-containing material is provided. The alkaline treatment is performed on the silicon containing material by placing the silicon containing material into an alkaline solution to obtain a modified silicon material. A peak intensity of the silicon-containing material at 3600 cm?1 to 3000 cm?1 in the spectrum by Fourier transform infrared spectroscopy (FTIR) is I0, and a peak intensity of the modified silicon material at 3600 cm?1 to 3000 cm?1 in the spectrum by FTIR is I1, wherein 0.9<I0/I1<1.
    Type: Application
    Filed: January 19, 2020
    Publication date: May 13, 2021
    Applicant: GET Green Energy Corp., Ltd.
    Inventors: Wei-Jen Liu, Cheng-Che Hsieh, Shin-Lee Liu, Jiann-Yih Yeh, Pin-Han Wang
  • Patent number: 10800949
    Abstract: Conductive carbon adhesive is an active technology researched in the world, and its application is quite wide, such as liquid crystal display (TFTLCD), organic light emitting diode (OLED), radio frequency identification system (RFID), antenna, solar cell, sensing and electronic components for devices. Since the two-dimensional carbon material used for the conductive carbon adhesive is easily stacked and agglomerated in the polymer, the present invention adds nano-fillers to the carbon material to prepare a three-dimensional conductive carbon adhesive to prevent carbon material agglomeration.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: October 13, 2020
    Assignee: National Chung-Shan Institute of Science and Technology
    Inventors: Hsiao-Min Wu, Chien-Liang Chang, Kuei-Ting Hsu, Wei-Jen Liu, Chia-Hsin Zhang
  • Publication number: 20200317965
    Abstract: Conductive carbon adhesive is an active technology researched in the world, and its application is quite wide, such as liquid crystal display (TFTLCD), organic light emitting diode (OLED), radio frequency identification system (RFID), antenna, solar cell, sensing and electronic components for devices. Since the two-dimensional carbon material used for the conductive carbon adhesive is easily stacked and agglomerated in the polymer, the present invention adds nano-fillers to the carbon material to prepare a three-dimensional conductive carbon adhesive to prevent carbon material agglomeration.
    Type: Application
    Filed: April 2, 2019
    Publication date: October 8, 2020
    Inventors: Hsiao-Min Wu, Chien-Liang Chang, Kuei-Ting Hsu, Wei-Jen Liu, Chia-Hsin Zhang
  • Patent number: 10756332
    Abstract: A method of fabricating an anode material for a secondary battery includes following steps. A carbon-containing biomass material is provided. The carbon-containing biomass material is mixed with a solid-state nitrogen-containing precursor via a solid-phase mixing method to form a mixture. A sintering process is performed on the mixture to form a nitrogen-doped biomass carbon.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: August 25, 2020
    Assignee: Chung Yuan Christian University
    Inventors: Wei-Jen Liu, Shing-Yu Tsai
  • Patent number: 10644308
    Abstract: An electrode material of a sodium-ion battery, a method of manufacturing the same, and an electrode of the sodium-ion battery are provided. The electrode material of the sodium-ion battery includes an oxide comprising sodium, vanadium, and phosphorus represented by formula 2 below: Na3+x2?yV2(PO4?yFy)3, wherein 0.01?x2?0.99 and 0.01?y?0.3.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: May 5, 2020
    Assignee: Chung Yuan Christian University
    Inventors: Wei-Jen Liu, Yi-Tang Chiu, Rasu Muruganantham