Patents by Inventor Wei-Zhong Li

Wei-Zhong Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11594541
    Abstract: The present application provides an anti-fuse one-time programmable (OTP) memory array and a manufacturing method of the anti-fuse one-time programmable (OTP) memory array. The memory array includes: active areas; pairs of programming word lines and read word lines; and dummy word lines. The active areas extend along a first direction in a semiconductor substrate, and are separately arranged along a second direction. The programming word lines, the read word lines and the dummy word lines extend along the second direction over the semiconductor substrate. A region in which a pair of programming word line and read word line are intersected with one of the active areas defines a unit cell in the memory array. The dummy word lines respectively lie between adjacent pairs of programming word lines and read word lines. A region in which one of the dummy word lines is intersected with one of the active areas defines an isolation transistor.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: February 28, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventors: Wei-Zhong Li, Hsih-Yang Chiu
  • Publication number: 20220310633
    Abstract: The present application provides an anti-fuse one-time programmable (OTP) memory array and a manufacturing method of the anti-fuse one-time programmable (OTP) memory array. The memory array includes: active areas; pairs of programming word lines and read word lines; and dummy word lines. The active areas extend along a first direction in a semiconductor substrate, and are separately arranged along a second direction. The programming word lines, the read word lines and the dummy word lines extend along the second direction over the semiconductor substrate. A region in which a pair of programming word line and read word line are intersected with one of the active areas defines a unit cell in the memory array. The dummy word lines respectively lie between adjacent pairs of programming word lines and read word lines. A region in which one of the dummy word lines is intersected with one of the active areas defines an isolation transistor.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 29, 2022
    Inventors: WEI-ZHONG LI, HSIH-YANG CHIU
  • Patent number: 11307249
    Abstract: The present application discloses a method for characterizing a resistance state of a programmable element of an integrated circuit. The method includes the steps of setting a first programming voltage of a first polarity to program the programmable element of the integrated circuit, setting a first read voltage of the first polarity to the integrated circuit at a first temperature to obtain a first read current, and a first resistance is derived from the first read current, setting the first read voltage of the first polarity to the integrated circuit at a second temperature to obtain a second read current, the second temperature is at least 50° C. higher than the first temperature, and a second resistance is derived from the second read current, and comparing the first resistance and the second resistance to characterize the resistance state of the programmable element.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: April 19, 2022
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventors: Ting-Cih Kang, Wei-Zhong Li, Hsih-Yang Chiu
  • Publication number: 20090215224
    Abstract: A method for manufacturing a thin film solar cell involves applying an inductively-coupled-plasma during the deposition of selenium. A precursor thin film is formed. The precursor thin film can include copper, indium, and gallium. The inductively-coupled-plasma is applied to the selenium as the selenium is deposited into the precursor thin film to produce the thin film. The selenium is deposited into precursor thin film by evaporation, sputtering, or using a reactive gas. An inert gas is used as a carry and discharge gas. The precursor thin film and the selenium are deposited using a deposition system. The deposition system includes an inductively-coupled-plasma device. The inductively-coupled-plasma device includes a quartz plate, a plasma discharge coil, and an inlet system. The deposition can be an in-line system, a roll-to-roll system, or a hybrid system.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 27, 2009
    Inventors: Wei-Zhong Li, Ken Tang
  • Patent number: 7116480
    Abstract: An optical switch includes a first port, a second port, a first component group, a second component group, and a switching component group. The switching component group includes a reflector, a polarization beam splitter coupled to the reflector, and a polarization switch coupled to the polarization beam splitter. The first component group is coupled between the first port and the reflector in the switch component group. The second component group is coupled between the second port and the polarization beam splitter in the switch component group.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: October 3, 2006
    Assignee: Oplink Communications, Inc.
    Inventor: Wei-Zhong Li
  • Patent number: 7039262
    Abstract: An optical depolarizer includes a birefringent block, a reflector coupled to the block, a first input port for providing polarized light to the block and an output port configured to receive polarized light from the block. The depolarizer optionally includes a non-reciprocal combination-device having a principal direction and including a first birefringent wedge, a second birefringent wedge, and a non-reciprocal rotating element. The non-reciprocal rotating element can be a Faraday rotator. The birefringent block can be optically coupled to the non-reciprocal combinatoin device. The optical depolarizer can include a lens that is optically coupled to the first wedge. The optical depolarizer can include a capillary for holding at least a PM optical fiber and an output optical fiber.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: May 2, 2006
    Assignee: Oplink Communications, Inc.
    Inventors: Wei-Zhong Li, Qingdong Guo
  • Patent number: 6987896
    Abstract: An optical isolator includes a non-reciprocal combination-device and a reflector. The non-reciprocal combination-device has a principal direction and includes a first birefringent wedge, a second birefringent wedge, and a non-reciprocal rotating element. The non-reciprocal rotating element can be a Faraday rotator. The reflector is positioned proximate to the second birefringent wedge, for reflecting light exiting from the non-reciprocal combination-device in the principal direction to reenter the non-reciprocal combination-device in a reverse principal direction. The optical isolator can include a lens that is optically coupled to the first wedge. The optical isolator can include a capillary for holding an input PM optical fiber and an output PM optical fiber. The optical isolator can also include a capillary for holding at least two input PM optical fibers and an output optical fiber.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: January 17, 2006
    Assignee: Oplink Communications, Inc.
    Inventors: Wei-Zhong Li, Qingdong Guo
  • Patent number: 6915061
    Abstract: A variable optical attenuator includes a first lens, a MEMS device, a second lens, and a wedge. The first lens is configured to collimate an input light received on a first port and focus an output light on a focus point proximate to a second port. The MEMS device includes a reflection surface having a tilting angle thereof controllable by a control variable. The second lens has a focus point positioned proximate to the reflection surface of the MEMS device. The wedge is positioned between the first lens and the second lens and is configured to refract the input light received from the first lens to enter the second lens and refract the output light received from the second lens to enter the first lens.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: July 5, 2005
    Assignee: Oplink Communications, Inc.
    Inventors: Wei-Zhong Li, Wenhui Wang
  • Patent number: 6900933
    Abstract: An integrated optical fiber amplifier system includes a non-reciprocal combination-device and an optical fiber amplifier. The non-reciprocal combination-device includes a first birefringent wedge, a second birefringent wedge, and a non-reciprocal rotating element. The optical fiber amplifier is optically coupled to the first birefringent wedge for receiving a combined pump light from the non-reciprocal combination-device.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: May 31, 2005
    Assignee: Oplink Communications, Inc.
    Inventors: Wei-Zhong Li, Qingdong Guo
  • Publication number: 20050094919
    Abstract: An optical depolarizer includes a birefringent block, a reflector coupled to the block, a first input port for providing polarized light to the block and an output port configured to receive polarized light from the block. The depolarizer optionally includes a non-reciprocal combination-devicehaving a principal direction and including a first birefringent wedge, a second birefringent wedge, and a non-reciprocal rotating element. The non-reciprocal rotating element can be a Faraday rotator. The birefringent block can be optically coupled to the non-reciprocal combinatoin device. The optical depolarizer can include a lens that is optically coupled to the first wedge. The optical depolarizer can include a capillary for holding at least a PM optical fiber and an output optical fiber.
    Type: Application
    Filed: November 12, 2004
    Publication date: May 5, 2005
    Inventors: Wei-Zhong Li, Qingdong Guo
  • Patent number: 6888971
    Abstract: An extendable four-port circulator includes a middle birefringent crystal, a first birefringent crystal, a first non-reciprocal device, a second birefringent crystal, and a second non-reciprocal device. The first non-reciprocal device is coupled to the first birefringent crystal. The second non-reciprocal device is coupled to the second birefringent crystal. The middle birefringent crystal includes a first surface, a second surface, a third surface, and a fourth surface. The first surface is coupled to the first non-reciprocal device. The second surface is coupled to the second non-reciprocal device. The third surface defines first and second extension interfaces. The fourth surface defines third and fourth extension interfaces. A multi-port circulator includes at least one extendable four-port circulator.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: May 3, 2005
    Assignee: Oplink Communications, Inc.
    Inventor: Wei-Zhong Li
  • Patent number: 6882759
    Abstract: A four-port circulator includes a first birefringent crystal, a structured polarization rotator, a first birefringent wedge, a second birefringent crystal, a non-reciprocal device, and a second birefringent wedge. The structured polarization rotator is coupled to the first birefringent crystal. The first birefringent wedge is coupled to the structured polarization rotator. The second birefringent crystal is coupled to the first birefringent wedge. The non-reciprocal device is coupled to the second birefringent crystal. The second birefringent wedge is coupled to the non-reciprocal device.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: April 19, 2005
    Assignee: Oplink Communications, Inc.
    Inventor: Wei-Zhong Li
  • Patent number: 6873462
    Abstract: A three-port circulator includes a non-reciprocal rotating element, a first birefringent wedge, and a second birefringent wedge. The non-reciprocal rotating element has a rotation axis and rotates the polarization of light passing through it by an predetermined angle. The first birefringent wedge has a first optical axis substantially perpendicular to the rotation axis. The second birefringent wedge has a second optical axis substantially perpendicular to both the rotation axis and the first optical axis. The second birefringent wedge is optically coupled between the non-reciprocal rotating element and the first birefringent wedge.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: March 29, 2005
    Assignee: Oplink Communications, Inc.
    Inventor: Wei-Zhong Li
  • Patent number: 6839170
    Abstract: An optical system provides reflection-type isolation, and may include variable optical attenuation and/or a tap monitor. The optical system may include an optical isolator with a beam splitter such as a walk-off plate, a focusing element such as a GRIN lens, a combiner comprising two birefringent wedges and a non-reciprocal rotating device such as a Faraday rotator, a compensation device, and a reflector. The Faraday rotator may be variable to provide variable attenuation. The reflector may be a partial reflector to provide a tap monitor. The optical system is configured so that light transmitted into the optical isolator through the input fiber may be transmitted out of the optical isolator through the output fiber, but light transmitted into the optical isolator through the output fiber is generally not transmitted out of the optical isolator through the input fiber.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: January 4, 2005
    Assignee: Oplink Communications, Inc.
    Inventor: Wei-Zhong Li
  • Patent number: 6836575
    Abstract: An optical device includes non-reciprocal combination-device and a polarizer. The non-reciprocal combination-device has a principal direction and a reverse principal direction. The non-reciprocal combination-device includes a first birefringent wedge, a second birefringent wedge, and a non-reciprocal rotating element. The polarizer receives a first light signal from the second birefringent wedge traveling in the principal direction and transmits a second light signal to enter the second birefringent wedge in the reverse principal direction.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: December 28, 2004
    Assignee: Oplink Communications, Inc.
    Inventor: Wei-Zhong Li
  • Patent number: 6819810
    Abstract: An optical depolarizer includes a non-reciprocal combination-device, a birefringent block, and a reflector. The non-reciprocal combination-device has a principal direction and includes a first birefringent wedge, a second birefringent wedge, and a non-reciprocal rotating element. The non-reciprocal rotating element can be a Faraday rotator. The birefringent block is optically coupled to the second birefringent wedge. The reflector is optically coupled to the birefringent block. The optical depolarizer can include a lens that is optically coupled to the first wedge. The optical depolarizer can include a capillary for holding at least a PM optical fiber and an output optical fiber.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: November 16, 2004
    Assignee: Oplink Communications, Inc.
    Inventors: Wei-Zhong Li, Qingdong Guo
  • Publication number: 20040218846
    Abstract: An extendable four-port circulator includes a middle birefringent crystal, a first birefringent crystal, a first non-reciprocal device, a second birefringent crystal, and a second non-reciprocal device. The first non-reciprocal device is coupled to the first birefringent crystal. The second non-reciprocal device is coupled to the second birefringent crystal. The middle birefringent crystal includes a first surface, a second surface, a third surface, and a fourth surface. The first surface is coupled to the first non-reciprocal device. The second surface is coupled to the second non-reciprocal device. The third surface defines first and second extension interfaces. The fourth surface defines third and fourth extension interfaces. A multi-port circulator includes at least one extendable four-port circulator.
    Type: Application
    Filed: June 1, 2004
    Publication date: November 4, 2004
    Applicant: Oplink Communications, Inc., a Delaware corporation
    Inventor: Wei-Zhong Li
  • Publication number: 20040218845
    Abstract: An optical depolarizer includes a non-reciprocal combination-device, a birefringent block, and a reflector. The non-reciprocal combination-device has a principal direction and includes a first birefringent wedge, a second birefringent wedge, and a non-reciprocal rotating element. The non-reciprocal rotating element can be a Faraday rotator. The birefringent block is optically coupled to the second birefringent wedge. The reflector is optically coupled to the birefringent block. The optical depolarizer can include a lens that is optically coupled to the first wedge. The optical depolarizer can include a capillary for holding at least a PM optical fiber and an output optical fiber.
    Type: Application
    Filed: April 9, 2002
    Publication date: November 4, 2004
    Inventors: Wei-Zhong Li, Qingdong Guo
  • Patent number: 6762879
    Abstract: In another aspect, the invention provides a closed loop optical circulator including a first crystal for splitting an input light signal into two components, a second crystal for deflecting the two components received from the first crystal in a direction if the two components have a first polarization, a third crystal for deflecting the two components received from the second crystal in an opposite direction if the two components have the first polarization, and a fourth crystal for joining the two components received from the third crystal.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: July 13, 2004
    Assignee: Oplink Communications, Inc.
    Inventor: Wei-Zhong Li
  • Patent number: 6751366
    Abstract: An extendable four-port circulator includes a middle birefringent crystal, a first birefringent crystal, a first non-reciprocal device, a second birefringent crystal, and a second non-reciprocal device. The first non-reciprocal device is coupled to the first birefringent crystal. The second non-reciprocal device is coupled to the second birefringent crystal. The middle birefringent crystal includes a first surface, a second surface, a third surface, and a fourth surface. The first surface is coupled to the first non-reciprocal device. The second surface is coupled to the second non-reciprocal device. The third surface defines first and second extension interfaces. The fourth surface defines third and fourth extension interfaces. A multi-port circulator includes at least one extendable four-port circulator.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: June 15, 2004
    Assignee: Oplink Communications, Inc.
    Inventor: Wei-Zhong Li