Patents by Inventor Weize Chen

Weize Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160099240
    Abstract: A method of fabricating a laterally diffused metal-oxide-semiconductor (LDMOS) transistor device having a bipolar transistor for electrostatic discharge (ESD) protection includes doping a substrate to form a body region of the LDMOS transistor device in the substrate, the body region having a first conductivity type, forming a doped isolating region of the LDMOS transistor device in the substrate, the doped isolating region having a second conductivity type and surrounding a device area of the LDMOS transistor device in which the body region is disposed, forming a base contact region of the bipolar transistor, the base contact region being disposed within the body region and having the first conductivity type, and doping the substrate to form an isolation contact region for the doped isolating region that defines a collector region of the bipolar transistor, to form source and drain regions of the LDMOS transistor device in the substrate, and to form an emitter region of the bipolar transistor within the body
    Type: Application
    Filed: December 11, 2015
    Publication date: April 7, 2016
    Applicant: Freescale Seminconductor, Inc.
    Inventors: Weize Chen, Patrice M. Parris
  • Publication number: 20160013182
    Abstract: Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a body region of the second conductivity type, and the diode circuit is connected between the isolation structure and the body region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).
    Type: Application
    Filed: September 21, 2015
    Publication date: January 14, 2016
    Inventors: WEIZE CHEN, HUBERT M. BODE, RICHARD J. DE SOUZA, PATRICE M. PARRIS
  • Patent number: 9236472
    Abstract: A device includes a semiconductor substrate having a first conductivity type, a device isolating region in the semiconductor substrate, defining an active area, and having a second conductivity type, a body region in the active area and having the first conductivity type, and a drain region in the active area and spaced from the body region to define a conduction path of the device, the drain region having the second conductivity type. The device isolating region and the body region are spaced from one another to establish a first breakdown voltage lower than a second breakdown voltage in the conduction path.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: January 12, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weize Chen, Hubert M. Bode, Richard J. De Souza, Patrice M. Parris
  • Patent number: 9231120
    Abstract: A Schottky diode includes a device structure having a central portion and a plurality of fingers. Distal portions of the fingers overlie leakage current control (LCC) regions. An LCC region is relatively narrow and deep, terminating in proximity to a buried layer of like polarity. Under reverse bias, depletion regions forming in an active region lying between the buried layer and the LCC regions occupy the entire extent of the active region and thereby provide a carrier depleted wall. An analogous depletion region occurs in the active region residing between any pair of adjacent fingers. If the fingers include latitudinal oriented fingers and longitudinal oriented fingers, depletion region blockades in three different orthogonal orientations may occur. The formation of the LCC regions may include the use of a high dose, low energy phosphorous implant using an LCC implant mask and the isolation structures as an additional hard mask.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: January 5, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weize Chen, Xin Lin, Patrice M. Parris
  • Publication number: 20150380317
    Abstract: Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a drain region of the second conductivity type, and the diode circuit is connected between the isolation structure and the drain region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).
    Type: Application
    Filed: September 4, 2015
    Publication date: December 31, 2015
    Inventors: WEIZE CHEN, HUBERT M. BODE, RICHARD J. DE SOUZA, PATRICE M. PARRIS
  • Patent number: 9214542
    Abstract: A device includes a substrate, a body region in the substrate and having a first conductivity type, source and drain regions in the substrate, having a second conductivity type, and spaced from one another to define a conduction path that passes through the body region, a doped isolating region in the substrate, having the second conductivity type, and configured to surround a device area in which the conduction path is disposed, an isolation contact region in the substrate, having the second conductivity type, and electrically coupled to the doped isolating region to define a collector region of a bipolar transistor, and first and second contact regions within the body region, having the first and second conductivity types, respectively, and configured to define a base contact region and an emitter region of the bipolar transistor, respectively.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: December 15, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weize Chen, Patrice M. Parris
  • Publication number: 20150357324
    Abstract: Embodiments include methods of forming a semiconductor device having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a source region of the first conductivity type, and the diode circuit is connected between the isolation structure and the source region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).
    Type: Application
    Filed: August 17, 2015
    Publication date: December 10, 2015
    Inventors: WEIZE CHEN, HUBERT M. BODE, RICHARD J. DE SOUZA, PATRICE M. PARRIS
  • Publication number: 20150333189
    Abstract: Zener diode structures and related fabrication methods and semiconductor devices are provided. An exemplary semiconductor device includes first and second Zener diode structures. The first Zener diode structure includes a first region, a second region that is adjacent to the first region, and a third region adjacent to the first region and the second region to provide a junction that is configured to influence a first reverse breakdown voltage of a junction between the first region and the second region. The second Zener diode structure includes a fourth region, a fifth region that is adjacent to the fourth region, and a sixth region adjacent to the fourth region and the fifth region to provide a junction configured to influence a second reverse breakdown voltage of a junction between the fourth region and the fifth region, wherein the second reverse breakdown voltage and the first reverse breakdown voltage are different.
    Type: Application
    Filed: July 27, 2015
    Publication date: November 19, 2015
    Applicant: FREESCALE SEMICONDUCTOR INC.
    Inventors: Weize CHEN, XIin LIN, Patrice M. PARRIS
  • Publication number: 20150316503
    Abstract: A differential pair sensing circuit (300) includes control gates (306, 316) for separately programming a reference transistor (350) and a chemically-sensitive transistor (351) to a desired threshold voltage Vt to eliminate the mismatch between the transistors in order to increase the sensitivity and/or accuracy of the sensing circuit without increasing the circuit size.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 5, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Md M. Hoque, Patrice M. Parris, Weize Chen, Richard J. De Souza
  • Patent number: 9142554
    Abstract: Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a body region of the second conductivity type, and the diode circuit is connected between the isolation structure and the body region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: September 22, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weize Chen, Hubert M. Bode, Richard J. De Souza, Patrice M. Parris
  • Patent number: 9129990
    Abstract: Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a drain region of the second conductivity type, and the diode circuit is connected between the isolation structure and the drain region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: September 8, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weize Chen, Hubert M. Bode, Richard J. De Souza, Patrice M. Parris
  • Patent number: 9111767
    Abstract: Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a source region of the first conductivity type, and the diode circuit is connected between the isolation structure and the source region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: August 18, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weize Chen, Hubert M. Bode, Richard J. De Souza, Patrice M. Parris
  • Patent number: 9099487
    Abstract: Zener diode structures and related fabrication methods and semiconductor devices are provided. An exemplary semiconductor device includes first and second Zener diode structures. The first Zener diode structure includes a first region, a second region that is adjacent to the first region, and a third region adjacent to the first region and the second region to provide a junction that is configured to influence a first reverse breakdown voltage of a junction between the first region and the second region. The second Zener diode structure includes a fourth region, a fifth region that is adjacent to the fourth region, and a sixth region adjacent to the fourth region and the fifth region to provide a junction configured to influence a second reverse breakdown voltage of a junction between the fourth region and the fifth region, wherein the second reverse breakdown voltage and the first reverse breakdown voltage are different.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: August 4, 2015
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventors: Weize Chen, Xin Lin, Patrice M. Parris
  • Publication number: 20150171018
    Abstract: An embodiment of an Ion Sensitive Field Effect Transistor (ISFET) structure includes a substrate, source and drain regions formed within the substrate and spatially separated by a channel region, a gate dielectric and a gate formed over the channel region, multiple conductive structures overlying the surface of the substrate, and one or more protection diode circuits coupled between one or more of the multiple conductive structures and the substrate. The multiple conductive structures include a floating gate structure and a sense plate structure. The floating gate structure is formed over the gate dielectric and includes the gate. The sense plate structure is electrically coupled to the floating gate structure and is configured to sense a concentration of a target ion or molecule in a fluid adjacent to a portion of the sense plate structure.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Inventors: MD M. HOQUE, PATRICE PARRIS, WEIZE CHEN, RICHARD DE SOUZA
  • Publication number: 20150162417
    Abstract: Zener diode structures and related fabrication methods and semiconductor devices are provided. An exemplary semiconductor device includes first and second Zener diode structures. The first Zener diode structure includes a first region, a second region that is adjacent to the first region, and a third region adjacent to the first region and the second region to provide a junction that is configured to influence a first reverse breakdown voltage of a junction between the first region and the second region. The second Zener diode structure includes a fourth region, a fifth region that is adjacent to the fourth region, and a sixth region adjacent to the fourth region and the fifth region to provide a junction configured to influence a second reverse breakdown voltage of a junction between the fourth region and the fifth region, wherein the second reverse breakdown voltage and the first reverse breakdown voltage are different.
    Type: Application
    Filed: December 5, 2013
    Publication date: June 11, 2015
    Inventors: WEIZE CHEN, XIN LIN, PATRICE M. PARRIS
  • Patent number: 9024380
    Abstract: A device includes a semiconductor substrate, a body region in the semiconductor substrate, having a first conductivity type, and including a channel region through which charge carriers flow, a drain region in the semiconductor substrate, having a second conductivity type, and spaced from the body region along a first lateral dimension, a drift region in the semiconductor substrate, having the second conductivity type, and electrically coupling the drain region to the channel region, and a plurality of floating reduced surface field (RESURF) regions in the semiconductor substrate adjacent the drift region, having the first conductivity type, and around which the charge carriers drift through the drift region under an electric field arising from a voltage applied to the drain region. Adjacent floating RESURF regions of the plurality of floating RESURF regions are spaced from one another along a second lateral dimension of the device by a respective gap.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: May 5, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weize Chen, Richard J. De Souza, Patrice M. Parris
  • Patent number: 9018673
    Abstract: A disclosed Zener diode includes, in one embodiment, an anode region and a cathode region that form a shallow sub-surface latitudinal Zener junction. The Zener diode may further include an anode contact region interconnecting the anode region with a contact located away from the Zener junction region and a silicide blocking structure overlying the anode region. The Zener diode may also include one or more shallow, sub-surface longitudinal p-n junctions at the junctions between lateral edges of the cathode region and the adjacent region. The adjacent region may be a heavily doped region such as the anode contact region. In other embodiments, the Zener diode may include a breakdown voltage boost region comprising a more lightly doped region located between the cathode region and the anode contact region.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: April 28, 2015
    Assignee: Freescale Semiconductor Inc.
    Inventors: Weize Chen, Xin Lin, Patrice M. Parris
  • Publication number: 20150085407
    Abstract: Protection device structures and related fabrication methods and devices are provided. An exemplary device includes a first interface, a second interface, a first protection circuitry arrangement coupled to the first interface, and a second protection circuitry arrangement coupled between the first protection circuitry arrangement and the second interface. The second protection circuitry arrangement includes a first transistor and a diode coupled to the first transistor, wherein the first transistor and the diode are configured electrically in series between the first protection circuitry arrangement and the second interface.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 26, 2015
    Inventors: WEIZE CHEN, PATRICE M. PARRIS
  • Publication number: 20140375370
    Abstract: An ISFET includes a control gate coupled to a floating gate in a CMOS device. The control gate, for example, a poly-to-well capacitor, is configured to receive a bias voltage and effect movement of a trapped charge between the control gate and the floating gate. The threshold voltage of the ISFET can therefore by trimmed to a predetermined value, thereby storing the trim information (the amount of trapped charge in the floating gate) within the ISFET itself.
    Type: Application
    Filed: September 5, 2014
    Publication date: December 25, 2014
    Inventors: PATRICE M. PARRIS, WEIZE CHEN, RICHARD J. DE SOUZA, MD M. HOQUE, JOHN M. MCKENNA
  • Patent number: 8878257
    Abstract: An ISFET includes a control gate coupled to a floating gate in a CMOS device. The control gate, for example, a poly-to-well capacitor, is configured to receive a bias voltage and effect movement of a trapped charge between the control gate and the floating gate. The threshold voltage of the ISFET can therefore by trimmed to a predetermined value, thereby storing the trim information (the amount of trapped charge in the floating gate) within the ISFET itself.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: November 4, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Patrice M. Parris, Weize Chen, Richard J. De Souza, Md M. Hoque, John M. McKenna