Patents by Inventor William Blake Kolb

William Blake Kolb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11960683
    Abstract: A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 nm?L2?L1?50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: April 16, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R. D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Publication number: 20240110084
    Abstract: The present disclosure provides laminates, which include adhesive materials and methods that allow for the removal of contaminants, e.g. particulate contaminants, from a substrate surface. In one embodiment, the laminates include (i) a substrate with contaminant disposed on its surface, (ii) a liquid, adhesive precursor and (iii) a film layer. The liquid, adhesive precursor is disposed between the substrate and the film layer. In another embodiment, the laminates include (i) a substrate with contaminant disposed on its surface, (ii) a cured adhesive layer and (iii) a film layer. The cured adhesive layer is disposed between the substrate and the film layer. The laminates may be used to remove contaminant from the substrate surface by removal of the film layer and the cured adhesive layer, which entraps the contaminant therein.
    Type: Application
    Filed: December 3, 2021
    Publication date: April 4, 2024
    Inventors: Uma Rames Krishna Lagudu, Benjamin R. Coonce, Morgan A. Priolo, William Blake Kolb, Eric W. Nelson
  • Patent number: 11921373
    Abstract: A backlight includes an extended light source adapted to emit light. A reflective polarizer is disposed on the extended light source, such that for substantially normally incident light and for at least a first wavelength in a range from about 420 nanometer (nm) to about 650 nm, the reflective polarizer reflects at least 60% of the incident light having a first polarization state and transmits at least 60% of the incident light having an orthogonal second polarization state. A first prismatic film is disposed between the extended light source and the reflective polarizer. A retarder layer is disposed between the reflective polarizer and the first prismatic film, such that for substantially normally incident light at a wavelength of about 550 nm, the retarder layer has a retardance nW, where n is an integer ?1 and W is a wavelength between about 160 nm and about 300 nm.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: March 5, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Kristy A. Gillette, Michelle L Toy, William Blake Kolb, Jonah Shaver, Jason S. Petaja
  • Patent number: 11885999
    Abstract: An optical construction includes a reflective polarizer and an optically diffusive film disposed on the reflective polarizer. The reflective polarizer includes an outer layer including a plurality of first particles partially protruding from a first major surface thereof to form a structured major surface. A first optically diffusive layer is conformably disposed on the structured major surface. The optically diffusive film includes a second optically diffusive layer including a plurality of nanoparticles dispersed therein, and a structured layer including a structured major surface. For a substantially normally incident light and a visible wavelength range from about 450 nm to about 650 nm and an infrared wavelength range from about 930 nm to about 970 nm, the second optically diffusive layer has an average specular transmittance Vs in the visible wavelength range and an average specular transmittance Is in the infrared wavelength range, where Is/Vs?2.5.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: January 30, 2024
    Assignee: 3M INNOVATION PROPERTIES COMPANY
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Publication number: 20230341615
    Abstract: An optical construction includes a reflective polarizer and an optically diffusive film disposed on the reflective polarizer. The reflective polarizer includes an outer layer including a plurality of first particles partially protruding from a first major surface thereof to form a structured major surface. A first optically diffusive layer is conformably disposed on the structured major surface. The optically diffusive film includes a second optically diffusive layer including a plurality of nanoparticles dispersed therein, and a structured layer including a structured major surface. For a substantially normally incident light and a visible wavelength range from about 450 nm to about 650 nm and an infrared wavelength range from about 930 nm to about 970 nm, the second optically diffusive layer has an average specular transmittance Vs in the visible wavelength range and an average specular transmittance Is in the infrared wavelength range, where Is/Vs?2.5.
    Type: Application
    Filed: May 4, 2021
    Publication date: October 26, 2023
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Patent number: 11717849
    Abstract: Apparatus and method useful for, among other things, providing a layer by layer coating of materials on a substrate.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: August 8, 2023
    Inventors: Ellison G. Kawakami, William Blake Kolb, Henrik B. Van Lengerich
  • Publication number: 20230214062
    Abstract: A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 mn?L2?L1?50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.
    Type: Application
    Filed: May 4, 2021
    Publication date: July 6, 2023
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Publication number: 20230066094
    Abstract: A backlight includes an extended light source adapted to emit light. A reflective polarizer is disposed on the extended light source, such that for substantially normally incident light and for at least a first wavelength in a range from about 420 nanometer (nm) to about 650 nm, the reflective polarizer reflects at least 60% of the incident light having a first polarization state and transmits at least 60% of the incident light having an orthogonal second polarization state. A first prismatic film is disposed between the extended light source and the reflective polarizer. A retarder layer is disposed between the reflective polarizer and the first prismatic film, such that for substantially normally incident light at a wavelength of about 550 nm, the retarder layer has a retardance nW, where n is an integer ?1 and W is a wavelength between about 160 nm and about 300 nm.
    Type: Application
    Filed: February 1, 2021
    Publication date: March 2, 2023
    Inventors: Kristy A. Gillette, Michelle L. Toy, William Blake Kolb, Jonah Shaver, Jason S. Petaja
  • Patent number: 11522025
    Abstract: Polymeric films, which may be adhesive films, and display devices including such polymeric films, wherein a polymeric film includes: a first polymeric layer having two major surfaces, wherein the first polymeric layer includes a first polymeric matrix and particles. The first polymeric layer includes: a first a polyolefin-based low WVTR adhesive polymeric matrix having a refractive index n1; and particles having a refractive index n2 uniformly dispersed within the first polymeric matrix; wherein the particles are present in an amount of less than 30 vol-%, based on the volume of the first polymeric layer, and have a particle size range of 400 nanometers (nm) to 3000 nm; and wherein n1 is different than n2.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: December 6, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Encai Hao, Zhaohui Yang, Albert I. Everaerts, Yongshang Lu, William Blake Kolb, Keith R. Bruesewitz
  • Patent number: 11472909
    Abstract: Polymeric films, which may be adhesive films, and display devices including such polymeric films, wherein a polymeric film includes: a first polymeric layer having two major surfaces, wherein the first polymeric layer includes a first polymeric matrix and particles. The first polymeric layer includes: a first polymeric matrix having a refractive index n1; and particles having a refractive index n2 uniformly dispersed within the first polymeric matrix; wherein the particles are present in an amount of less than 30 vol-%, based on the volume of the first polymeric layer, and have a particle size range of 400 nanometers (nm) to 3000 nm; and wherein n1 is different than n2.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: October 18, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Encai Hao, Zhaohui Yang, Albert I. Everaerts, Yongshang Lu, William Blake Kolb, Keith R. Bruesewitz
  • Patent number: 11435616
    Abstract: Optical constructions are disclosed. A disclosed optical construction includes a reflective polarizer layer, and an optical film that is disposed on the reflective polarizer layer. The optical film has an optical haze that is not less than about 50%. Substantial portions of each two neighboring major surfaces in the optical construction are in physical contact with each other. The optical construction has an axial luminance gain that is not less than about 1.2.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: September 6, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Encai Hao, Fei Lu, William Blake Kolb, Brian W. Ostlie, Adam D. Haag, Michael Benton Free, William D. Coggio, Michael L. Steiner, Soemantri Widagdo, Kui Chen-Ho, Lan H. Liu, Robert F. Kamrath, Scott M. Tapio, John A. Wheatley, Charles D. Hoyle, Michael F. Weber
  • Publication number: 20220271261
    Abstract: The present disclosure provides an article including a layer having a nanostructured first surface including nanofeatures and an opposing second surface, and an organic layer including a major surface attached to a portion of the nanofeatures. The nanostructured first surface includes protruding features that are formed of a single composition and/or recessed features. The nanofeatures and the major surface of the second layer together define at least one void. The present disclosure also provides a method of making the article including contacting nanofeatures of a layer having a nanostructured surface with a major surface of an organic layer and reacting at least one material to secure the two layers together. In addition, the present disclosure provides an optical information display and an OLED device including the article. The nanostructured surface of the article is protected from damage and contamination by the organic layer.
    Type: Application
    Filed: September 16, 2020
    Publication date: August 25, 2022
    Inventors: Jeffrey L. Solomon, Henrik B. van Lengerich, Bryan V. Hunt, Tabitha A. Silliman, William Blake Kolb, Nicholas C. Erickson, Stephen M. Menke, Derek W. Patzman, Justin P. Meyer, Bert T. Chien, Thomas E. Muehle, Thomas P. Klun
  • Publication number: 20220187521
    Abstract: An optical stack includes an optical film (200) and an optical adhesive (500) disposed on the optical film. The optical adhesive has a major structured surface facing away from the optical film that includes a plurality of channels formed therein. The channels define a plurality of substantially flat land regions therebetween. The land regions include at least about 50% of a total surface area of the major structured surface. When the optical stack is placed on a support surface with the major structured surface of the optical adhesive contacting the support surface, the optical stack bonds to the support surface and may be removed from, or slidingly repositioned on, the support surface without damage to the optical adhesive or the support surface, and upon application of at least one of heat and pressure, the optical stack substantially permanently bonds to the support surface and the plurality of channels substantially disappear.
    Type: Application
    Filed: April 28, 2020
    Publication date: June 16, 2022
    Inventors: Michelle L. Toy, Kristy A. Gillette, Matthew B. Johnson, Eileen M. Franey, Carley A. Haroldson, Joseph P. Attard, Guy M. Kallman, William Blake Kolb
  • Patent number: 11335551
    Abstract: The present method comprises providing a flexible web substrate (e.g., polymeric flexible web substrates) that forms at least part of a component of a device, coating so as to wet-out on and cover all or a substantial portion of a major surface on one side or both sides of the flexible web substrate with flowable polymeric material, while the flexible web substrate is moving in a down-web direction, and solidifying the polymeric material so as to form one cleaning layer on the major surface of one side or both sides of the flexible web substrate. The present invention can be utilized in a continuous in-line manufacturing process. In applications of the present invention where the flexible web substrate will not form a component of a device, the present invention broadly provides a method for cleaning particles from a flexible web of indefinite length.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: May 17, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: William R. Dudley, William Blake Kolb, Michael A. Johnson, Stephen A. Johnson, Chris J. Tanley
  • Patent number: 11179959
    Abstract: A security element, including: a substrate having a first structured major surface and a second structured major surface; and a first metal layer coated on the first structured major surface, wherein the transparency of the first metal layer is between 10% and 90%; and a second metal layer coated on the second structured major surface.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: November 23, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Ta-Hua Yu, William Blake Kolb, Douglas S. Dunn
  • Patent number: 11127924
    Abstract: Display devices that include: an organic light emitting diode panel having a multilayer construction including one or more adhesive films; and a polymeric film incorporated within the multilayer construction of the organic light emitting diode panel.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: September 21, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Encai Hao, Zhaohui Yang, Albert I. Everaerts, Yongshang Lu, William Blake Kolb, Keith R. Bruesewitz
  • Patent number: 11054558
    Abstract: A photochromic article is provided, containing a structural component, a fluid in contact with the structural component, and a photochromic organic dye in contact with the fluid; and a barrier layer disposed on the structural component to provide a barrier for the fluid and photochromic organic dye. The structural component includes a polymeric material that is porous, includes a plurality of cavities, or a combination thereof. A method of changing a light transmission of a photochromic article is provided. A method of forming a photochromic article is also provided.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: July 6, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Adam D. Miller, Donovan G. Weiblen, III, William Blake Kolb, Thomas P. Klun, Richard J. Pokorny
  • Patent number: 11052420
    Abstract: Apparatus and method are described and useful for, among other things, providing a layer by layer coating of materials on a belt. A directional gas curtain producing element is used to provide a gas curtain blowing on the belt in an upstream direction that simultaneously meters liquid from the belt and dries the belt.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: July 6, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ellison G. Kawakami, William Blake Kolb
  • Publication number: 20210138502
    Abstract: Apparatus and method useful for, among other things, providing a layer by layer coating of materials on a substrate.
    Type: Application
    Filed: January 20, 2021
    Publication date: May 13, 2021
    Inventors: ELLISON G. KAWAKAMI, WILLIAM BLAKE KOLB, HENRIK B. VAN LENGERICH
  • Publication number: 20210098546
    Abstract: An OLED display including a display panel and a color-correction component is described. A plurality of comparative display panels otherwise equivalent to the display panel but having one or more different optical thicknesses of OLED layers have a maximum white-point color shift from 0 to 45 degrees of WPCSC45 and a white-point axial efficiency of WPAEC. The plurality of comparative display panels defines a performance curve along a boundary of performance points. The OLED display and the display panel have respective maximum white-point color shifts from 0 to 45 degrees of WPCS45 and WPCS045 and respective white-point axial efficiencies of WPAE and WPAE0. WPCS045 and WPAE0 defines a performance point of the display panel to the right of the performance curve and WPCS45 and WPAE defines a performance point of the OLED display above or to the left of the performance curve. Methods of making the OLED display are described.
    Type: Application
    Filed: April 9, 2019
    Publication date: April 1, 2021
    Inventors: Nicholas C. Erickson, David G. Freier, Robert L. Brott, Bing Hao, David A. Rosen, Stephen M. Menke, Bert T. Chien, Song Taek Lee, Encai Hao, Zhaohui Yang, Albert I. Everaerts, Yongshang Lu, William Blake Kolb, Keith R. Bruesewitz, Adam D. Haag, Sun-Yong Park, Timothy J. Nevitt (Deceased), Brianna N. Wheeler, Jody L. Peterson, Gilles J. Benoit