Patents by Inventor William Blake Kolb

William Blake Kolb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210098546
    Abstract: An OLED display including a display panel and a color-correction component is described. A plurality of comparative display panels otherwise equivalent to the display panel but having one or more different optical thicknesses of OLED layers have a maximum white-point color shift from 0 to 45 degrees of WPCSC45 and a white-point axial efficiency of WPAEC. The plurality of comparative display panels defines a performance curve along a boundary of performance points. The OLED display and the display panel have respective maximum white-point color shifts from 0 to 45 degrees of WPCS45 and WPCS045 and respective white-point axial efficiencies of WPAE and WPAE0. WPCS045 and WPAE0 defines a performance point of the display panel to the right of the performance curve and WPCS45 and WPAE defines a performance point of the OLED display above or to the left of the performance curve. Methods of making the OLED display are described.
    Type: Application
    Filed: April 9, 2019
    Publication date: April 1, 2021
    Inventors: Nicholas C. Erickson, David G. Freier, Robert L. Brott, Bing Hao, David A. Rosen, Stephen M. Menke, Bert T. Chien, Song Taek Lee, Encai Hao, Zhaohui Yang, Albert I. Everaerts, Yongshang Lu, William Blake Kolb, Keith R. Bruesewitz, Adam D. Haag, Sun-Yong Park, Timothy J. Nevitt (Deceased), Brianna N. Wheeler, Jody L. Peterson, Gilles J. Benoit
  • Patent number: 10926572
    Abstract: A security element, including: a substrate; a monolayer of beads on the substrate; and a metal layer on the monolayer of beads; wherein the size of the beads is in between about 100 nm to about 50 ?m.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: February 23, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Ta-Hua Yu, William Blake Kolb
  • Patent number: 10926289
    Abstract: Apparatus and method useful for, among other things, providing a layer by layer coating of materials on a substrate.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: February 23, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ellison G. Kawakami, William Blake Kolb, Henrik B. Van Lengerich
  • Publication number: 20200411801
    Abstract: Polymeric films, which may be adhesive films, and display devices including such polymeric films, wherein a polymeric film includes: a first polymeric layer having two major surfaces, wherein the first polymeric layer includes a first polymeric matrix and particles. The first polymeric layer includes: a first polymeric matrix having a refractive index n1; and particles having a refractive index n2 uniformly dispersed within the first polymeric matrix; wherein the particles are present in an amount of less than 30 vol-%, based on the volume of the first polymeric layer, and have a particle size range of 400 nanometers (nm) to 3000 nm; and wherein n1 is different than n2.
    Type: Application
    Filed: September 16, 2020
    Publication date: December 31, 2020
    Inventors: Encai HAO, Zhaohui YANG, Albert I. EVERAERTS, Yongshang LU, William Blake KOLB, Keith R. BRUESEWITZ
  • Patent number: 10797269
    Abstract: Polymeric films, which may be adhesive films, and display devices including such polymeric films, wherein a polymeric film includes: a first polymeric layer having two major surfaces, wherein the first polymeric layer includes a first polymeric matrix and particles. The first polymeric layer includes: a first polymeric matrix having a refractive index ni; and particles having a refractive index n2 uniformly dispersed within the first polymeric matrix; wherein the particles are present in an amount of less than 30 vol-%, based on the volume of the first polymeric layer, and have a particle size range of 400 nanometers (nm) to 3000 nm; and wherein ni is different than n2.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: October 6, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Encai Hao, Zhaohui Yang, Albert I. Everaerts, Yongshang Lu, William Blake Kolb, Keith R. Bruesewitz
  • Publication number: 20200233268
    Abstract: Optical constructions are disclosed. A disclosed optical construction includes a reflective polarizer layer, and an optical film that is disposed on the reflective polarizer layer. The optical film has an optical haze that is not less than about 50%. Substantial portions of each two neighboring major surfaces in the optical construction are in physical contact with each other. The optical construction has an axial luminance gain that is not less than about 1.2.
    Type: Application
    Filed: April 6, 2020
    Publication date: July 23, 2020
    Inventors: Encai HAO, Fei LU, William Blake KOLB, Brian W. OSTLIE, Adam D. HAAG, Michael Benton FREE, William D. COGGIO, Michael L. STEINER, Soemantri WIDAGDO, Kui CHEN-HO, Lan H. LIU, Robert F. KAMRATH, Scott M. TAPIO, John A. WHEATLEY, Charles D. HOYLE, Michael F. WEBER
  • Publication number: 20200152715
    Abstract: Polymeric films, which may be adhesive films, and display devices including such polymeric films, wherein a polymeric film includes: a first polymeric layer having two major surfaces, wherein the first polymeric layer includes a first polymeric matrix and particles. The first polymeric layer includes: a first a polyolefin-based low WVTR adhesive polymeric matrix having a refractive index n1; and particles having a refractive index n2 uniformly dispersed within the first polymeric matrix; wherein the particles are present in an amount of less than 30 vol-%, based on the volume of the first polymeric layer, and have a particle size range of 400 nanometers (nm) to 3000 nm; and wherein n1 is different than n2.
    Type: Application
    Filed: May 3, 2018
    Publication date: May 14, 2020
    Inventors: Encai HAO, Zhaohui YANG, Albert I. EVERAERTS, Yongshang LU, William Blake KOLB, Keith R. BRUESEWITZ
  • Patent number: 10649274
    Abstract: Optical constructions are disclosed. A disclosed optical construction includes a reflective polarizer layer, and an optical film that is disposed on the reflective polarizer layer. The optical film has an optical haze that is not less than about 50%. Substantial portions of each two neighboring major surfaces in the optical construction are in physical contact with each other. The optical construction has an axial luminance gain that is not less than about 1.2.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: May 12, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Encai Hao, Fei Lu, William Blake Kolb, Brian W. Ostlie, Adam D. Haag, Michael Benton Free, William D. Coggio, Michael L. Steiner, Soemantri Widagdo, Kui Chen-Ho, Lan H. Liu, Robert F. Kamrath, Scott M. Tapio, John A. Wheatley, Charles D. Hoyle, Michael F. Weber
  • Publication number: 20200075894
    Abstract: Polymeric films, which may be adhesive films, and display devices including such polymeric films, wherein a polymeric film includes: a first polymeric layer having two major surfaces, wherein the first polymeric layer includes a first polymeric matrix and particles. The first polymeric layer includes: a first polymeric matrix having a refractive index ni; and particles having a refractive index n2 uniformly dispersed within the first polymeric matrix; wherein the particles are present in an amount of less than 30 vol-%, based on the volume of the first polymeric layer, and have a particle size range of 400 nanometers (nm) to 3000 nm; and wherein ni is different than n2.
    Type: Application
    Filed: November 5, 2019
    Publication date: March 5, 2020
    Inventors: Encai HAO, Zhaohui YANG, Albert I. EVERAERTS, Yongshang LU, William Blake KOLB, Keith R. BRUESEWITZ
  • Publication number: 20200067019
    Abstract: Display devices that include: an organic light emitting diode panel having a multilayer construction including one or more adhesive films; and a polymeric film incorporated within the multilayer construction of the organic light emitting diode panel.
    Type: Application
    Filed: November 5, 2019
    Publication date: February 27, 2020
    Inventors: Encai HAO, Zhaohui YANG, Albert I. EVERAERTS, Yongshang LU, William Blake KOLB, Keith R. BRUESEWITZ
  • Publication number: 20200058493
    Abstract: The present method comprises providing a flexible web substrate (e.g., polymeric flexible web substrates) that forms at least part of a component of a device, coating so as to wet-out on and cover all or a substantial portion of a major surface on one side or both sides of the flexible web substrate with flowable polymeric material, while the flexible web substrate is moving in a down-web direction, and solidifying the polymeric material so as to form one cleaning layer on the major surface of one side or both sides of the flexible web substrate. The present invention can be utilized in a continuous in-line manufacturing process. In applications of the present invention where the flexible web substrate will not form a component of a device, the present invention broadly provides a method for cleaning particles from a flexible web of indefinite length.
    Type: Application
    Filed: October 24, 2019
    Publication date: February 20, 2020
    Inventors: William R. Dudley, William Blake Kolb, Michael A. Johnson, Stephen A. Johnson, Chris J. Tanley
  • Patent number: 10539722
    Abstract: Optical film is disclosed. The optical film includes a binder, a plurality of particles, and a plurality of interconnected voids. The volume fraction of the plurality of interconnected voids in the optical film is not less than about 20%. The weight ratio of the binder to the plurality of the particles is not less than about 1:2.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: January 21, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Encai Hao, William Blake Kolb, Brant U. Kolb, Brian W. Ostlie, Naiyong Jing, Michael Benton Free, Hui Ren, Robert L. Brott, Fei Lu, Audrey A. Sherman, Scott M. Tapio, Charles David Hoyle, John A. Wheatley
  • Publication number: 20190324178
    Abstract: A photochromic article is provided, containing a structural component, a fluid in contact with the structural component, and a photochromic organic dye in contact with the fluid; and a barrier layer disposed on the structural component to provide a barrier for the fluid and photochromic organic dye. The structural component includes a polymeric material that is porous, includes a plurality of cavities, or a combination thereof. A method of changing a light transmission of a photochromic article is provided. A method of forming a photochromic article is also provided.
    Type: Application
    Filed: November 28, 2017
    Publication date: October 24, 2019
    Inventors: Adam D. Miller, Donovan G. Weiblen, III, William Blake Kolb, Thomas P. Klun, Richard J. Pokorny
  • Publication number: 20190299700
    Abstract: A security element, including: a substrate having a first structured major surface and a second structured major surface; and a first metal layer coated on the first structured major surface, wherein the transparency of the first metal layer is between 10% and 90%; and a second metal layer coated on the second structured major surface.
    Type: Application
    Filed: March 22, 2019
    Publication date: October 3, 2019
    Inventors: Ta-Hua Yu, William Blake Kolb, Douglas S. Dunn
  • Publication number: 20190299699
    Abstract: A security element, including: a substrate; a monolayer of beads on the substrate; and a metal layer on the monolayer of beads; wherein the size of the beads is in between about 100 nm to about 50 ?m.
    Type: Application
    Filed: March 22, 2019
    Publication date: October 3, 2019
    Inventors: Ta-Hua Yu, William Blake Kolb
  • Publication number: 20190233693
    Abstract: Various embodiments disclosed relate to shaped abrasive particles having sharp tips, methods of making the shaped abrasive particles, methods of abrading a substrate with the shaped abrasive particles, and coated abrasive articles including the shaped abrasive particles. The shaped abrasive particle includes a ceramic, has a polygonal cross-sectional shape along a longitudinal axis of the shaped abrasive particle, and at least one tip of the shaped abrasive particle has a radius of curvature of less than or equal to about 19.2 microns.
    Type: Application
    Filed: July 31, 2017
    Publication date: August 1, 2019
    Inventors: Dwight D. Erickson, Ian R. Owen, Shawn C. Dodds, Matthew S. Stay, Scott R. Culler, John T. Boden, William C. Quade, Joseph D. Solem, Negus B. Adefris, Chainika Jangu, Thomas J. Anderson, Gregory S. Mueller, William Blake Kolb
  • Patent number: 10316245
    Abstract: A quantum dot film article includes a first barrier film, a second barrier film, and a quantum dot layer separating the first barrier from the second barrier film. The quantum dot layer includes quantum dots dispersed in a polymer material. The polymer material includes a methacrylate polymer, an epoxy polymer and a photoinitiator.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: June 11, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Eric W. Nelson, Karissa L. Eckert, William Blake Kolb, Tyler D. Nesvik, Minghu Tu
  • Patent number: 10302823
    Abstract: The present disclosure generally relates to patterned gradient polymer films and methods for making the same, and more particularly to patterned gradient optical films that have regions that include variations in optical properties such as refractive index, haze, transmission, clarity, or a combination thereof. The variation in optical properties can occur across a transverse plane of the film as well as through a thickness direction of the film.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: May 28, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: William Blake Kolb, Michael Benton Free, Brant U. Kolb, Fei Lu, John A. Wheatley
  • Patent number: 10293370
    Abstract: A process and apparatus for producing a gradient nanovoided article, a gradient nanovoided coating, and a gradient low refractive index coating is described. The process includes providing a first solution of a polymerizable material in a solvent, and providing a first environment proximate a first region of the coating and a different second environment proximate an adjacent region of the coating. The process further includes at least partially polymerizing the polymerizable material to form a composition that includes an insoluble polymer matrix and a second solution. The insoluble polymer matrix includes a plurality of nanovoids that are filled with the second solution, and a major portion of the solvent from the second solution is removed. A first volume fraction of the plurality of nanovoids proximate the first region of the coating is less than a second volume fraction of the plurality of nanovoids proximate an adjacent of the coating.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: May 21, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Adam D. Haag, William F. Edmonds, Jason S. Petaja, Eric W. Nelson, William Blake Kolb, Encai Hao, Fei Lu, Michael Benton Free
  • Patent number: 10126469
    Abstract: Nanostructured material exhibiting a random anisotropic nanostructured surface, and exhibiting an average reflection at 60 degrees off angle less than 1 percent. The nanostructured materials are useful, for example, for optical and optoelectronic devices, displays, solar, light sensors, eye wear, camera lens, and glazing.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: November 13, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ta-Hua Yu, Moses M. David, Abdujabar K. Dire, Albert I. Everaerts, William Blake Kolb, Todd M. Sandman, Shunsuke Suzuki, Scott A. Walker