Patents by Inventor William C. Nowlin

William C. Nowlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10194998
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector in space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and methods for their use are also provided.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: February 5, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Patent number: 10123844
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector in space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and methods for their use are also provided.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: November 13, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Publication number: 20180324414
    Abstract: In one embodiment, a digital zoom and panning system for digital video is disclosed including an image acquisition device to capture digital video images; an image buffer to store one or more frames of digital video images as source pixels; a display device having first pixels to display images; a user interface to accept user input including a source rectangle to select source pixels within frames of the digital video images, a destination rectangle to select target pixels within the display device to display images, and a region of interest within the digital video images to display in the destination rectangle; and a digital mapping and filtering device to selectively map and filter source pixels in the region of interest from the image buffer into target pixels of the display device in response to the user input.
    Type: Application
    Filed: July 12, 2018
    Publication date: November 8, 2018
    Inventors: Brian D. Hoffman, Christopher J. Hasser, William C. Nowlin
  • Patent number: 10117714
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector in space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and methods for their use are also provided.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: November 6, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Patent number: 10038888
    Abstract: In one embodiment of the invention, a digital zoom and panning system for digital video is disclosed including an image acquisition device to capture digital video images; an image buffer to store one or more frames of digital video images as source pixels; a display device having first pixels to display images; a user interface to accept user input including a source rectangle to select source pixels within frames of the digital video images, a destination rectangle to select target pixels within the display device to display images, and a region of interest within the digital video images to display in the destination rectangle; and a digital mapping and filtering device to selectively map and filter source pixels in the region of interest from the image buffer into target pixels of the display device in response to the user input.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: July 31, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brian D. Hoffman, Christopher J. Hasser, William C. Nowlin
  • Publication number: 20180185110
    Abstract: A multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures includes first and second master input devices, a first slave robotic mechanism, and at least one processor configured to generate a first slave command for the first slave robotic mechanism by switchably using one or both of a first command indicative of manipulation of the first master input device by a first user and a second command indicative of manipulation of the second master input device by a second user. To facilitate the collaboration or training, both first and second users communicate with each other through an audio system and see the minimally invasive surgery site on first and second displays respectively viewable by the first and second users.
    Type: Application
    Filed: January 10, 2018
    Publication date: July 5, 2018
    Inventors: Rajesh Kumar, Brian D. Hoffman, Giuseppe Maria Prisco, David Q. Larkin, William C. Nowlin, Frederic H. Moll, Stephen J. Blumenkranz, Gunter D. Niemeyer, J. Kenneth Salisbury, JR., Yulun Wang, Modjtaba Ghodoussi, Darrin R. Uecker, James W. Wright, Amante A. Mangaser, Ranjan Mukherjee
  • Publication number: 20180153632
    Abstract: A surgical method is provided for use with a teleoperated surgical system (surgical system), the method comprising: recording surgical instrument kinematic information indicative of surgical instrument motion produced within the surgical system during the occurrence of the surgical procedure; determining respective kinematic signatures associated with respective surgical instrument motions; producing an information structure in a computer readable storage device that associates respective kinematic signatures with respective control signals; comparing, during a performance of the surgical procedure surgical instrument kinematic information during the performance with at least one respective kinematic signature; launching, during a performance of the surgical procedure an associated respective control signal in response to a match between surgical instrument kinematics during the performance and a respective kinematic signature.
    Type: Application
    Filed: June 9, 2016
    Publication date: June 7, 2018
    Inventors: Brent Tokarchuk, Mahdi Azizian, Joey Chau, Simon P. DiMaio, Brian D. Hoffman, Anthony M. Jarc, Henry C, Lin, Ian E. McDowall, William C. Nowlin, John D. Seaman, Jonathan M. Sorger
  • Publication number: 20180071033
    Abstract: The present disclosure relates to systems, methods, and tools for tool tracking using image-derived data from one or more tool-located references features. In some embodiments, an associated medical system includes a tool having a distal end that is insertable into a patient body, a stereo image capture device insertable into the patient body so that the stereo image capture device captures a stereo image of at least a portion of the a two-dimensional marker at least partially surrounding a portion of the tool, and a processor coupled to the image capture device and configured to determine a pose of the tool by processing the stereo image. Associated methods and tools are also provided.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Tao Zhao, Wenyi Zhao, William C. Nowlin
  • Publication number: 20180042687
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector in space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and methods for their use are also provided.
    Type: Application
    Filed: October 23, 2017
    Publication date: February 15, 2018
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Publication number: 20180028054
    Abstract: In one embodiment of the invention, a method and system for controlling a telesurgical tool is disclosed. The method and system for controlling a telesurgical tool includes moving a monitor displaying an image of a robotic surgical tool; sensing motion of the monitor; and translating the sensed motion of the monitor into motion of the robotic surgical tool.
    Type: Application
    Filed: October 4, 2017
    Publication date: February 1, 2018
    Inventors: Brian D. Hoffman, William C. Nowlin
  • Publication number: 20180028270
    Abstract: A minimally-invasive surgical system includes a slave surgical instrument having a slave surgical instrument tip and a master grip. The slave surgical instrument tip has an alignment in a common frame of reference and the master grip, which is coupled to the slave surgical instrument, has an alignment in the common frame of reference. An alignment error, in the common frame of reference, is a difference in alignment between the alignment of the slave surgical instrument tip and the alignment of the master grip. A ratcheting system (i) coupled to the master grip to receive the alignment of the master grip and (ii) coupled to the slave surgical instrument, to control motion of the slave by continuously reducing the alignment error, as the master grip moves, without autonomous motion of the slave surgical instrument tip and without autonomous motion of the master grip.
    Type: Application
    Filed: September 18, 2017
    Publication date: February 1, 2018
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, William C. Nowlin, Gunter D. Niemeyer, David S. Mintz
  • Publication number: 20180028268
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector in space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and methods for their use are also provided.
    Type: Application
    Filed: October 6, 2017
    Publication date: February 1, 2018
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Patent number: 9867671
    Abstract: A multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures includes first and second master input devices, a first slave robotic mechanism, and at least one processor configured to generate a first slave command for the first slave robotic mechanism by switchably using one or both of a first command indicative of manipulation of the first master input device by a first user and a second command indicative of manipulation of the second master input device by a second user. To facilitate the collaboration or training, both first and second users communicate with each other through an audio system and see the minimally invasive surgery site on first and second displays respectively viewable by the first and second users.
    Type: Grant
    Filed: May 29, 2017
    Date of Patent: January 16, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Rajesh Kumar, Brian D. Hoffman, Giuseppe Maria Prisco, David Q. Larkin, William C. Nowlin, Frederic H. Moll, Stephen J. Blumenkranz, Gunter D. Niemeyer, J. Kenneth Salisbury, Jr., Yulun Wang, Modjtaba Ghodoussi, Darrin R. Uecker, James W. Wright, Amante A. Mangaser, Ranjan Mukherjee
  • Patent number: 9867669
    Abstract: The present disclosure relates to systems, methods, and tools for tool tracking using image-derived data from one or more tool located reference features. A method includes: directing illuminating light from a light source onto a robotic surgical tool within a patient body, wherein the tool includes a plurality of primitive features having known positions on the tool, and wherein each feature includes a spherical reflective surface; capturing stereo images of the plurality of primitive features when the tool is within the patient body, wherein the stereo images are captured by an image capture device adjacent the illumination source so that the illumination light reflected from the imaged primitive features toward the image capture device substantially aligns with spherical centers of the surfaces of the imaged primitive features, and determining a position for the tool by processing the stereo images so as to locate the spherical centers of the imaged primitive features by using the reflected light.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: January 16, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Tao Zhao, Wenyi Zhao, William C. Nowlin
  • Publication number: 20170339399
    Abstract: In one embodiment of the invention, a digital zoom and panning system for digital video is disclosed including an image acquisition device to capture digital video images; an image buffer to store one or more frames of digital video images as source pixels; a display device having first pixels to display images; a user interface to accept user input including a source rectangle to select source pixels within frames of the digital video images, a destination rectangle to select target pixels within the display device to display images, and a region of interest within the digital video images to display in the destination rectangle; and a digital mapping and filtering device to selectively map and filter source pixels in the region of interest from the image buffer into target pixels of the display device in response to the user input.
    Type: Application
    Filed: June 6, 2017
    Publication date: November 23, 2017
    Inventors: Brian D. Hoffman, Christopher J. Hasser, William C. Nowlin
  • Patent number: 9814537
    Abstract: A minimally-invasive surgical system includes a slave surgical instrument having a slave surgical instrument tip and a master grip. The slave surgical instrument tip has an alignment in a common frame of reference and the master grip, which is coupled to the slave surgical instrument, has an alignment in the common frame of reference. An alignment error, in the common frame of reference, is a difference in alignment between the alignment of the slave surgical instrument tip and the alignment of the master grip. A ratcheting system (i) coupled to the master grip to receive the alignment of the master grip and (ii) coupled to the slave surgical instrument, to control motion of the slave by continuously reducing the alignment error, as the master grip moves, without autonomous motion of the slave surgical instrument tip and without autonomous motion of the master grip.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: November 14, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, William C. Nowlin, Gunter D. Niemeyer, David S. Mintz
  • Publication number: 20170265948
    Abstract: A slave manipulator manipulates a medical device in response to operator manipulation of an input device through joint control systems. The stiffness and strength of the slave manipulator are adjustable according to criteria such as the mode of operation of the slave manipulator, the functional type of the medical device currently being held by the slave manipulator, and the current phase of a medical procedure being performed using the slave manipulator by changing corresponding parameters of the control system. For safety purposes, such changes are not made until it is determined that it can be done in a smooth manner without causing jerking of the medical device. Further, an excessive force warning may be provided to surgery staff when excessive forces are being commanded on the slave manipulator for more than a specified period of time.
    Type: Application
    Filed: May 30, 2017
    Publication date: September 21, 2017
    Inventors: Giuseppe Maria Prisco, Hubert Stein, Paul Millman, David W. Bailey, William C. Nowlin, Thomas R. Nixon, Gregory K. Toth
  • Publication number: 20170258537
    Abstract: A multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures includes first and second master input devices, a first slave robotic mechanism, and at least one processor configured to generate a first slave command for the first slave robotic mechanism by switchably using one or both of a first command indicative of manipulation of the first master input device by a first user and a second command indicative of manipulation of the second master input device by a second user. To facilitate the collaboration or training, both first and second users communicate with each other through an audio system and see the minimally invasive surgery site on first and second displays respectively viewable by the first and second users.
    Type: Application
    Filed: May 29, 2017
    Publication date: September 14, 2017
    Inventors: Rajesh Kumar, Brian D. Hoffman, Giuseppe Maria Prisco, David Q. Larkin, William C. Nowlin, Frederic H. Moll, Stephen J. Blumenkranz, Gunter D. Niemeyer, J. Kenneth Salisbury, JR., Yulun Wang, Modjtaba Ghodoussi, Darrin R. Uecker, James W. Wright, Amante A. Mangaser, Ranjan Mukherjee
  • Publication number: 20170215975
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector in space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and methods for their use are also provided.
    Type: Application
    Filed: April 14, 2017
    Publication date: August 3, 2017
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Publication number: 20170215976
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector in space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and methods for their use are also provided.
    Type: Application
    Filed: April 14, 2017
    Publication date: August 3, 2017
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart