Patents by Inventor William C. Nowlin

William C. Nowlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130245641
    Abstract: A minimally-invasive surgical system includes a slave surgical instrument having a slave surgical instrument tip and a master grip. The slave surgical instrument tip has an alignment in a common frame of reference and the master grip, which is coupled to the slave surgical instrument, has an alignment in the common frame of reference. An alignment error, in the common frame of reference, is a difference in alignment between the alignment of the slave surgical instrument tip and the alignment of the master grip. A ratcheting system (i) coupled to the master grip to receive the alignment of the master grip and (ii) coupled to the slave surgical instrument, to control motion of the slave by continuously reducing the alignment error, as the master grip moves, without autonomous motion of the slave surgical instrument tip and without autonomous motion of the master grip.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 19, 2013
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, William C. Nowlin, Günter D. Niemeyer, David S. Mintz
  • Patent number: 8504201
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: August 6, 2013
    Assignee: Intuitive Sugrical Operations, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, Jr., Michael J. Tierney
  • Patent number: 8489235
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: July 16, 2013
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, Jr., Michael J. Tierney
  • Patent number: 8473031
    Abstract: A medical robotic system has functionality to determine and display information of a distance indicated by movement of one or more tools being robotically manipulated by an operator. The distance is determined using sensed robotic manipulation of the one or more tools. Information of the distance is displayed on the monitor so as to be visually associated with the movement and/or positions of the tools, such as a virtual tape measure that extends along with or between images of the one or more tools on the monitor or as a virtual ruler with the distance being indicated by a pointer. Alternatively, information of the distance may simply be indicated on a digital read-out shown on the monitor that is displayed and continually updated with the movement of the one or more tools.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: June 25, 2013
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Thomas R. Nixon, Margaret M. Nixon, William C. Nowlin
  • Patent number: 8423186
    Abstract: A minimally-invasive surgical system includes a slave surgical instrument having a slave surgical instrument tip and a master grip. The slave surgical instrument tip has an alignment in a common frame of reference and the master grip, which is coupled to the slave surgical instrument, has an alignment in the common frame of reference. An alignment error, in the common frame of reference, is a difference in alignment between the alignment of the slave surgical instrument tip and the alignment of the master grip. A ratcheting system (i) coupled to the master grip to receive the alignment of the master grip and (ii) coupled to the slave surgical instrument, to control motion of the slave by continuously reducing the alignment error, as the master grip moves, without autonomous motion of the slave surgical instrument tip and without autonomous motion of the master grip.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 16, 2013
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon DiMaio, William C. Nowlin, Günter D. Niemeyer, David S. Mintz
  • Publication number: 20120154564
    Abstract: In one embodiment of the invention, a digital zoom and panning system for digital video is disclosed including an image acquisition device to capture digital video images; an image buffer to store one or more frames of digital video images as source pixels; a display device having first pixels to display images; a user interface to accept user input including a source rectangle to select source pixels within frames of the digital video images, a destination rectangle to select target pixels within the display device to display images, and a region of interest within the digital video images to display in the destination rectangle; and a digital mapping and filtering device to selectively map and filter source pixels in the region of interest from the image buffer into target pixels of the display device in response to the user input.
    Type: Application
    Filed: February 29, 2012
    Publication date: June 21, 2012
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Brian David Hoffman, Christopher J. Hasser, William C. Nowlin
  • Publication number: 20120130399
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 24, 2012
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, JR., Michael J. Tierney
  • Patent number: 8155479
    Abstract: In one embodiment of the invention, a digital zoom and panning system for digital video is disclosed including an image acquisition device to capture digital video images; an image buffer to store one or more frames of digital video images as source pixels; a display device having first pixels to display images; a user interface to accept user input including a source rectangle to select source pixels within frames of the digital video images, a destination rectangle to select target pixels within the display device to display images, and a region of interest within the digital video images to display in the destination rectangle; and a digital mapping and filtering device to selectively map and filter source pixels in the region of interest from the image buffer into target pixels of the display device in response to the user input.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: April 10, 2012
    Assignee: Intuitive Surgical Operations Inc.
    Inventors: Brian D. Hoffman, Christopher J. Hasser, William C. Nowlin
  • Patent number: 8147503
    Abstract: In one embodiment of the invention, a method is disclosed to locate a robotic instrument in the field of view of a camera. The method includes capturing sequential images in a field of view of a camera. The sequential images are correlated between successive views. The method further includes receiving a kinematic datum to provide an approximate location of the robotic instrument and then analyzing the sequential images in response to the approximate location of the robotic instrument. An additional method for robotic systems is disclosed. Further disclosed is a method for indicating tool entrance into the field of view of a camera.
    Type: Grant
    Filed: September 30, 2007
    Date of Patent: April 3, 2012
    Assignee: Intuitive Surgical Operations Inc.
    Inventors: Wenyi Zhao, Christopher J. Hasser, William C. Nowlin, Brian D. Hoffman
  • Patent number: 8108072
    Abstract: In one embodiment of the invention, a method for a robotic system is disclosed to track one or more robotic instruments. The method includes generating kinematics information for the robotic instrument within a field of view of a camera; capturing image information in the field of view of the camera; and adaptively fusing the kinematics information and the image information together to determine pose information of the robotic instrument. Additionally disclosed is a robotic medical system with a tool tracking sub-system. The tool tracking sub-system receives raw kinematics information and video image information of the robotic instrument to generate corrected kinematics information for the robotic instrument by adaptively fusing the raw kinematics information and the video image information together.
    Type: Grant
    Filed: September 30, 2007
    Date of Patent: January 31, 2012
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Wenyi Zhao, Christopher J J Hasser, William C. Nowlin, Brian D. Hoffman
  • Publication number: 20120020547
    Abstract: In one embodiment of the invention, a method is disclosed to locate a robotic instrument in the field of view of a camera. The method includes capturing sequential images in a field of view of a camera. The sequential images are correlated between successive views. The method further includes receiving a kinematic datum to provide an approximate location of the robotic instrument and then analyzing the sequential images in response to the approximate location of the robotic instrument. An additional method for robotic systems is disclosed. Further disclosed is a method for indicating tool entrance into the field of view of a camera.
    Type: Application
    Filed: September 30, 2011
    Publication date: January 26, 2012
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Wenyi Zhao, Christopher J. Hasser, William C. Nowlin, Brian D. Hoffman
  • Patent number: 8073528
    Abstract: In one embodiment of the invention, a tool tracking system is disclosed including a computer usable medium having computer readable program code to receive images of video frames from at least one camera and to perform image matching of a robotic instrument to determine video pose information of the robotic instrument within the images. The tool tracking system further includes computer readable program code to provide a state-space model of a sequence of states of corrected kinematics information for accurate pose information of the robotic instrument. The state-space model receives raw kinematics information of mechanical pose information and adaptively fuses the mechanical pose information and the video pose information together to generate the sequence of states of the corrected kinematics information for the robotic instrument. Additionally disclosed are methods for image guided surgery.
    Type: Grant
    Filed: September 30, 2007
    Date of Patent: December 6, 2011
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Wenyi Zhao, Christopher J. Hasser, William C. Nowlin, Brian D. Hoffman
  • Publication number: 20110276059
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
    Type: Application
    Filed: July 1, 2011
    Publication date: November 10, 2011
    Applicant: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Publication number: 20110270271
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
    Type: Application
    Filed: July 1, 2011
    Publication date: November 3, 2011
    Applicant: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Publication number: 20110264111
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Applicant: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Publication number: 20110264110
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Applicant: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Publication number: 20110264109
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Applicant: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Publication number: 20110264108
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Applicant: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, Larkin David Q., Gary S. Guthart
  • Publication number: 20110264112
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Applicant: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Shena, David Q. Larkin, Gary S. Guthart
  • Patent number: 8004229
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: August 23, 2011
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: William C. Nowlin, Paul W Mohr, Bruce M. Schena, David Q. Larkin, Gary Guthart