Patents by Inventor Wingyu Leung

Wingyu Leung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7447104
    Abstract: A word line driver is provided for accessing a DRAM cell embedded in a conventional logic process. The DRAM cell includes a p-channel access transistor coupled to a cell capacitor. The word line driver includes an n-channel transistor located in a p-well, wherein the p-well is located in a deep n-well. The deep n-well is located in a p-type substrate. A word line couples the drain of the n-channel transistor to the gate of the p-channel access transistor. A negative boosted voltage supply applies a negative boosted voltage to the p-well and the source of the n-channel transistor. The negative boosted voltage is less than ground by an amount equal to or greater than the threshold voltage of the p-channel access transistor. The deep n-well and the p-type substrate are coupled to ground. The various polarities can be reversed in another embodiment.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: November 4, 2008
    Assignee: MoSys, Inc.
    Inventor: Wingyu Leung
  • Publication number: 20080209303
    Abstract: A method for error detection and correction (EDC) includes: generating a complete EDC code in response to a data packet; distributing the complete EDC code among the data packet to create a plurality of bytes, each including a data portion from the data packet and an EDC code portion from the complete EDC code; storing the bytes in a memory module; retrieving the bytes from the memory module; forwarding the data portions of the bytes retrieved from the memory module to a requesting device; providing the data portions of the bytes retrieved from the memory module to an EDC functional block; providing the EDC code portions of the bytes retrieved from the memory module to the EDC functional block; and performing error checking and correction in the EDC functional block upon receiving the complete EDC code from the provided EDC code portions.
    Type: Application
    Filed: March 6, 2008
    Publication date: August 28, 2008
    Applicant: MOSYS, INC.
    Inventors: Wingyu Leung, Fu-Chieh Hsu
  • Publication number: 20080186778
    Abstract: A non-volatile memory system including an array of cells, each having an access transistor and a capacitor sharing a floating gate. The access transistors in each row are fabricated in separate well regions, which are independently biased. Within each row, the source of each access transistor is coupled to a corresponding virtual ground line, and each capacitor structure is coupled to a corresponding word line. Alternately, the source of each access transistor in a column is coupled to a corresponding virtual ground line. Within each column, the drain of each access transistor is coupled to a corresponding bit line. Select memory cells in each row are programmed by band-to-band tunneling. Bit line biasing prevents programming of non-selected cells of the row. Programming is prevented in non-selected rows by controlling the well region voltages of these rows. Sector erase operations are implemented by Fowler-Nordheim tunneling.
    Type: Application
    Filed: January 28, 2008
    Publication date: August 7, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-feng Fang, Wingyu Leung
  • Publication number: 20080159036
    Abstract: A method and apparatus for scaling an embedded DRAM array from a first process to a second process, wherein the scaling involves reducing the linear dimensions of features by a constant scale factor. From the first process to the second process, DRAM cell capacitor layout area is reduced by the square of the scale factor, while cell capacitance is reduced by the scale factor. The voltage used to supply the logic transistors is scaled down from the first process to the second process. However, the voltage used to supply the sense amplifiers remains constant in both processes. Thus, in an embedded DRAM array of the second process, sense amplifiers are supplied by a greater voltage than the logic transistors. This allows the sensing voltage of DRAM cells to be maintained from one process generation to another, while allowing memory size to scale with the square of the process scale factor.
    Type: Application
    Filed: March 13, 2008
    Publication date: July 3, 2008
    Applicant: MoSys, Inc.
    Inventor: Wingyu Leung
  • Publication number: 20080158929
    Abstract: A method and apparatus for scaling an embedded DRAM array from a first process to a second process, wherein the scaling involves reducing the linear dimensions of features by a constant scale factor. From the first process to the second process, DRAM cell capacitor layout area is reduced by the square of the scale factor, while cell capacitance is reduced by the scale factor. The voltage used to supply the logic transistors is scaled down from the first process to the second process. However, the voltage used to supply the sense amplifiers remains constant in both processes. Thus, in an embedded DRAM array of the second process, sense amplifiers are supplied by a greater voltage than the logic transistors. This allows the sensing voltage of DRAM cells to be maintained from one process generation to another, while allowing memory size to scale with the square of the process scale factor.
    Type: Application
    Filed: March 13, 2008
    Publication date: July 3, 2008
    Applicant: MoSys, Inc.
    Inventor: Wingyu Leung
  • Publication number: 20080153225
    Abstract: A method, apparatus, and system in which an embedded memory fabricated in accordance with a conventional logic process includes one or more electrically-alterable non-volatile memory cells, each having a programming transistor, a read transistor and a control capacitor, which share a common floating gate electrode. The under-diffusion of the source/drain regions of the programming transistor and control capacitor are maximized. In one embodiment, the source/drain regions of the programming transistor are electrically shored by transistor punch-through (or direct contact).
    Type: Application
    Filed: March 10, 2008
    Publication date: June 26, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-Feng Fang, Dennis Sinitsky, Wingyu Leung
  • Publication number: 20080151623
    Abstract: A method, apparatus, and system in which an embedded memory fabricated in accordance with a conventional logic process includes one or more electrically-alterable non-volatile memory cells, each having a programming transistor, a read transistor and a control capacitor, which share a common floating gate electrode. The under-diffusion of the source/drain regions of the programming transistor and control capacitor are maximized. In one embodiment, the source/drain regions of the programming transistor are electrically shored by transistor punch-through (or direct contact).
    Type: Application
    Filed: March 10, 2008
    Publication date: June 26, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Patent number: 7392456
    Abstract: Write check bits are generated in a predictive manner for partial-word write transactions in a memory system implementing error code correction. A read data word and associated read check bits are read from an address of the memory. If an error exists in a byte of the read data word, this byte is identified. At the same time, one or more bytes of the uncorrected read data word are merged with one or more bytes of a write data word, thereby creating a merged data word. Write check bits are generated in response to the merged data word. If the merged data word includes a byte of the read data word, which contains an error, the write check bits are modified to reflect this error. The merged data word and the modified (or unmodified) write check bits are then written to the address of the memory.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: June 24, 2008
    Assignee: MoSys, Inc.
    Inventors: Wingyu Leung, Kit Sang Tam
  • Patent number: 7391647
    Abstract: A non-volatile memory (NVM) cell fabricated on a semiconductor substrate, and including a floating gate electrode (which extends at least partially over all active regions of the NVM cell). The NVM cell also includes a PMOS access transistor located in a first n-type region, a PMOS control capacitor located in a second n-type region (separate from the first n-type region), and an NMOS programming transistor located in a p-type region. The floating gate electrode is a continuous electrode which extends over the active regions of the PMOS access transistor, the PMOS control capacitor and the NMOS programming transistor. Various array connections are provided for implementing arrays using this NVM cell. The PMOS access transistor and NMOS programming transistor can be replaced with an NMOS access transistor and a PMOS erase transistor, respectively, in an alternate embodiment.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: June 24, 2008
    Assignee: Mosys, Inc.
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Publication number: 20080137437
    Abstract: A non-volatile memory system including an array of cells, each having an access transistor and a capacitor sharing a floating gate. The access transistors in each row are fabricated in separate well regions, which are independently biased. Within each row, the source of each access transistor is coupled to a corresponding virtual ground line, and each capacitor structure is coupled to a corresponding word line. Alternately, the source of each access transistor in a column is coupled to a corresponding virtual ground line. Within each column, the drain of each access transistor is coupled to a corresponding bit line. Select memory cells in each row are programmed by band-to-band tunneling. Bit line biasing prevents programming of non-selected cells of the row. Programming is prevented in non-selected rows by controlling the well region voltages of these rows. Sector erase operations are implemented by Fowler-Nordheim tunneling.
    Type: Application
    Filed: January 28, 2008
    Publication date: June 12, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-feng Fang, Wingyu Leung
  • Publication number: 20080137438
    Abstract: A non-volatile memory system including an array of cells, each having an access transistor and a capacitor sharing a floating gate. The access transistors in each row are fabricated in separate well regions, which are independently biased. Within each row, the source of each access transistor is coupled to a corresponding virtual ground line, and each capacitor structure is coupled to a corresponding word line. Alternately, the source of each access transistor in a column is coupled to a corresponding virtual ground line. Within each column, the drain of each access transistor is coupled to a corresponding bit line. Select memory cells in each row are programmed by band-to-band tunneling. Bit line biasing prevents programming of non-selected cells of the row. Programming is prevented in non-selected rows by controlling the well region voltages of these rows. Sector erase operations are implemented by Fowler-Nordheim tunneling.
    Type: Application
    Filed: January 28, 2008
    Publication date: June 12, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-feng Fang, Wingyu Leung
  • Publication number: 20080137410
    Abstract: A non-volatile memory system including an array of cells, each having an access transistor and a capacitor sharing a floating gate. The access transistors in each row are fabricated in separate well regions, which are independently biased. Within each row, the source of each access transistor is coupled to a corresponding virtual ground line, and each capacitor structure is coupled to a corresponding word line. Alternately, the source of each access transistor in a column is coupled to a corresponding virtual ground line. Within each column, the drain of each access transistor is coupled to a corresponding bit line. Select memory cells in each row are programmed by band-to-band tunneling. Bit line biasing prevents programming of non-selected cells of the row. Programming is prevented in non-selected rows by controlling the well region voltages of these rows. Sector erase operations are implemented by Fowler-Nordheim tunneling.
    Type: Application
    Filed: January 28, 2008
    Publication date: June 12, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-feng Fang, Wingyu Leung
  • Publication number: 20080138950
    Abstract: A non-volatile memory cell with increased charge retention is fabricated on the same substrate as logic devices using a single-gate conventional logic process. A silicide-blocking dielectric structure is formed over a floating gate of the NVM cell, thereby preventing silicide formation over the floating gate, while allowing silicide formation over the logic devices. Silicide spiking and bridging are prevented in the NVM cell, as silicide-blocking dielectric structure prevents silicide metal from coming in contact with the floating gate or adjacent sidewall spacers. The silicide-blocking dielectric layer may expose portions of the active regions of the NVM cell, away from the floating gate and adjacent sidewall spacers, thereby enabling silicide formation on these portions. Alternately, the silicide-blocking dielectric layer may cover the active regions of the NVM cell during silicide formation. In this case, silicide-blocking dielectric layer may be thinned or removed after silicide formation.
    Type: Application
    Filed: January 28, 2008
    Publication date: June 12, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Publication number: 20080133848
    Abstract: A memory device incorporating a multi-media accelerator and an embedded memory, wherein the memory device operates as a standard stand-alone memory when the multi-media accelerator is not enabled. The memory device includes a memory interface that is compatible with multiple types of memory controllers, thereby enabling multiple types of external devices to interact with the multi-media accelerator and access the embedded memory. The embedded memory can be shared between external devices and multi-media devices.
    Type: Application
    Filed: December 1, 2006
    Publication date: June 5, 2008
    Inventors: Mukesh K. Patel, Wingyu Leung
  • Patent number: 7382658
    Abstract: A non-volatile memory system including an array of cells, each having an access transistor and a capacitor sharing a floating gate. The access transistors in each row are fabricated in separate well regions, which are independently biased. Within each row, the source of each access transistor is coupled to a corresponding virtual ground line, and each capacitor structure is coupled to a corresponding word line. Alternately, the source of each access transistor in a column is coupled to a corresponding virtual ground line. Within each column, the drain of each access transistor is coupled to a corresponding bit line. Select memory cells in each row are programmed by band-to-band tunneling. Bit line biasing prevents programming of non-selected cells of the row. Programming is prevented in non-selected rows by controlling the well region voltages of these rows. Sector erase operations are implemented by Fowler-Nordheim tunneling.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: June 3, 2008
    Assignee: MoSys, Inc.
    Inventors: Gang-feng Fang, Wingyu Leung
  • Patent number: 7353438
    Abstract: A memory system with transparent error correction circuitry provides full stuck-at fault coverage for both test data patterns and the corresponding error correction code (ECC) values. The memory system includes a semiconductor memory having a memory array, a memory interface and an error detection/correction unit. The memory array is configured to store test data patterns and corresponding error correction code (ECC) values. The memory interface is configured such that the ECC values are not directly accessible. The error detection/correction unit is configured to correct single-bit errors in the test data patterns and corresponding ECC values. A set of test data patterns associated with the semiconductor memory is selected such that any multiple-bit error in a test data pattern and the corresponding ECC value causes the error detection/correction unit to provide an output data pattern having an error, thereby rendering multiple-bit faults 100% detectable.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: April 1, 2008
    Assignee: MoSys, Inc.
    Inventors: Wingyu Leung, Kit Sang Tam, Mikolaj Tworek, Fu-Chieh Hsu
  • Publication number: 20080005492
    Abstract: A dual-port memory system is implemented using single-port memory cells. An access arbiter having a synchronization circuit is used to prioritize and synchronize the access requests associated with the two ports. The access arbiter can also prioritize and synchronize refresh requests, in the case where the single-port memory cells require refresh. Access requests on the two ports and the refresh requests can be asynchronous. The access arbiter synchronizes the various requests by latching the requests into first-stage registers when a row access signal (RAS) is activated, and subsequently latching the contents of the first-stage registers into second-stage registers after a selected delay.
    Type: Application
    Filed: June 29, 2006
    Publication date: January 3, 2008
    Applicant: MONOLITHIC SYSTEM TECHNOLOGY, INC.
    Inventor: Wingyu Leung
  • Publication number: 20070279987
    Abstract: A non-volatile memory system including an array of cells, each having an access transistor and a capacitor sharing a floating gate. The access transistors in each row are fabricated in separate well regions, which are independently biased. Within each row, the source of each access transistor is coupled to a corresponding virtual ground line, and each capacitor structure is coupled to a corresponding word line. Alternately, the source of each access transistor in a column is coupled to a corresponding virtual ground line. Within each column, the drain of each access transistor is coupled to a corresponding bit line. Select memory cells in each row are programmed by band-to-band tunneling. Bit line biasing prevents programming of non-selected cells of the row. Programming is prevented in non-selected rows by controlling the well region voltages of these rows. Sector erase operations are implemented by Fowler-Nordheim tunneling.
    Type: Application
    Filed: June 2, 2006
    Publication date: December 6, 2007
    Applicant: MONOLITHIC SYSTEM TECHNOLOGY, INC.
    Inventors: Gang-feng Fang, Wingyu Leung
  • Publication number: 20070247914
    Abstract: A non-volatile memory (NVM) cell fabricated on a semiconductor substrate, and including a floating gate electrode (which extends at least partially over all active regions of the NVM cell). The NVM cell also includes a PMOS access transistor located in a first n-type region, a PMOS control capacitor located in a second n-type region (separate from the first n-type region), and an NMOS programming transistor located in a p-type region. The floating gate electrode is a continuous electrode which extends over the active regions of the PMOS access transistor, the PMOS control capacitor and the NMOS programming transistor. Various array connections are provided for implementing arrays using this NVM cell. The PMOS access transistor and NMOS programming transistor can be replaced with an NMOS access transistor and a PMOS erase transistor, respectively, in an alternate embodiment.
    Type: Application
    Filed: April 11, 2006
    Publication date: October 25, 2007
    Applicant: Monolithic System Technology, Inc.
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Patent number: 7275200
    Abstract: A high-speed partial-word write operation is performed in a memory system. First, an error correction code (ECC) word, which includes a data word and associated error correction bits, is read from a memory array. A word line and a plurality of sense amplifiers are enabled during this read operation. The read data word is corrected in response to the associated error correction bits, thereby creating a corrected data word. The corrected data word is merged with a write data word, thereby creating a merged write data word. Write error correction bits are generated in response to the merged write data word, and the merged write data word and write error correction bits are written to the memory array. The word line and the plurality of sense amplifiers remain enabled from the reading operation through the write operation, thereby speeding up the partial-word write operation.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: September 25, 2007
    Assignee: Monolithic System Technology, Inc.
    Inventor: Wingyu Leung