Patents by Inventor Woo-Hyeong Lee

Woo-Hyeong Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070269963
    Abstract: A strained HOT MOSFET fabrication method. The MOSFET fabrication method includes providing a semiconductor structure which includes (a) a first semiconductor layer having a first crystallographic orientation, (b) a buried insulating layer on top of the first semiconductor layer, (c) a second semiconductor layer on top of the buried oxide layer. The second semiconductor layer has a second crystallographic orientation different from the first crystallographic orientation. The method further includes forming a third semiconductor layer on top of the first semiconductor layer which has the first crystallographic orientation. The method further includes forming a fourth semiconductor layer on top of the third semiconductor layer. The fourth semiconductor layer (a) comprises a different material than that of the third semiconductor layer, and (b) has the first crystallographic orientation.
    Type: Application
    Filed: May 19, 2006
    Publication date: November 22, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Woo-Hyeong Lee, Huilong Zhu
  • Publication number: 20070269992
    Abstract: Embodiments of the invention provide a method of forming a compressive stress nitride film overlying a plurality of p-type field effect transistor gate structures produced on a substrate through a high-density plasma deposition process. Embodiments include generating an environment filled with high-density plasma using source gases of at least silane, argon and nitrogen; biasing the substrate to a high frequency power of varying density, in a range between 0.8 W/cm2 and 5.0 W/cm2; and depositing the high-density plasma to the plurality of gate structures to form the compressive stress nitride film.
    Type: Application
    Filed: May 19, 2006
    Publication date: November 22, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daewon Yang, Woo-Hyeong Lee, Tai-chi Su, Yun-Yu Wang
  • Patent number: 7232774
    Abstract: A method of forming polycrystalline silicon with ultra-small grain sizes employs a differential heating of the upper and lower sides of the substrate of a CVD apparatus, in which the lower side of the substrate receives considerably more power than the upper side, preferable more than 75% of the power; and in which the substrate is maintained during deposition at a temperature more than 50° C. above the 550° C. crystallization temperature of silicon.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: June 19, 2007
    Assignee: International Business Machines Corporation
    Inventors: Ashima B. Chakravarti, Bruce B. Doris, Romany Ghali, Oleg G. Gluschenkov, Michael A. Gribelyuk, Woo-Hyeong Lee, Anita Madan
  • Publication number: 20070087540
    Abstract: Methods and resulting structure of forming a transistor having a high mobility channel are disclosed. In one embodiment, the method includes providing a gate electrode including a gate material area and a gate dielectric, the gate electrode being positioned over a channel in a silicon substrate. A dielectric layer is formed about the gate electrode, and the gate material area and the gate dielectric are removed from the gate electrode to form an opening into a portion of the silicon substrate that exposes source/drain extensions. A high mobility semiconductor material, i.e., one having a carrier mobility greater than doped silicon, is then formed in the opening such that it laterally contacts the source/drain extensions. The gate dielectric and the gate material area may then be re-formed. This invention eliminates the high temperature steps after the formation of high mobility channel material used in related art methods.
    Type: Application
    Filed: November 8, 2006
    Publication date: April 19, 2007
    Inventors: Omer Dokumaci, Woo-Hyeong Lee
  • Patent number: 7119016
    Abstract: A compound that includes at least Si, N and C in any combination, such as compounds of formula (R—NH)4-nSiXn wherein R is an alkyl group (which may be the same or different), n is 1, 2 or 3, and X is H or halogen (such as, e.g., bis-tertiary butyl amino silane (BTBAS)), may be mixed with silane or a silane derivative to produce a film. A polysilicon silicon film may be grown by mixing silane (SiH4) or a silane derviative and a compound including Si, N and C, such as BTBAS. Films controllably doped with carbon and/or nitrogen (such as layered films) may be grown by varying the reagents and conditions.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: October 10, 2006
    Assignees: International Business Machines Corporation, Applied Materials, Inc.
    Inventors: Ashima B. Chakravarti, Anita Madan, Woo-Hyeong Lee, Gregory Wayne Dibello, Ramaseshan Suryanarayanan Iyer
  • Publication number: 20060189061
    Abstract: The present invention provides a complementary metal oxide semiconductor integration process whereby a plurality of silicided metal gates are fabricated atop a gate dielectric. Each silicided metal gate that is formed using the integration scheme of the present invention has the same silicide metal phase and substantially the same height, regardless of the dimension of the silicide metal gate. The present invention also provides various methods of forming a CMOS structure having silicided contacts in which the polySi gate heights are substantially the same across the entire surface of a semiconductor structure.
    Type: Application
    Filed: April 19, 2006
    Publication date: August 24, 2006
    Inventors: Ricky Amos, Diane Boyd, Cyril Cabral, Richard Kaplan, Jakub Kedzierski, Victor Ku, Woo-Hyeong Lee, Ying Li, Anda Mocuta, Vijay Narayanan, An Steegen, Maheswaren Surendra
  • Publication number: 20060166417
    Abstract: Methods and resulting structure of forming a transistor having a high mobility channel are disclosed. In one embodiment, the method includes providing a gate electrode including a gate material area and a gate dielectric, the gate electrode being positioned over a channel in a silicon substrate. A dielectric layer is formed about the gate electrode, and the gate material area and the gate dielectric are removed from the gate electrode to form an opening into a portion of the silicon substrate that exposes source/drain extensions. A high mobility semiconductor material, i.e., one having a carrier mobility greater than doped silicon, is then formed in the opening such that it laterally contacts the source/drain extensions. The gate dielectric and the gate material area may then be re-formed. This invention eliminates the high temperature steps after the formation of high mobility channel material used in related art methods.
    Type: Application
    Filed: January 27, 2005
    Publication date: July 27, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Omer Dokumaci, Woo-Hyeong Lee
  • Patent number: 7071103
    Abstract: The present invention provides a method for retarding the diffusion of dopants from a first material layer (typically a semiconductor) into an overlayer or vice versa. In the method of the present invention, diffusion of dopants from the first semiconductor into the overlayer or vice versa is retarded by forming a monolayer comprising carbon and oxygen between the two layers. The monolayer is formed in the present invention utilizing a chemical pretreatment process in which a solution including iodine and an alcohol such as methanol is employed.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: July 4, 2006
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Huajie Chen, Michael A. Gribelyuk, Judson R. Holt, Woo-Hyeong Lee, Ryan M. Mitchell, Renee T. Mo, Dan M. Mocuta, Werner A. Rausch, Paul A. Ronsheim, Henry K. Utomo
  • Patent number: 7056782
    Abstract: The present invention provides a complementary metal oxide semiconductor integration process whereby a plurality of silicided metal gates are fabricated atop a gate dielectric. Each silicided metal gate that is formed using the integration scheme of the present invention has the same silicide metal phase and substantially the same height, regardless of the dimension of the silicide metal gate. The present invention also provides various methods of forming a CMOS structure having silicided contacts in which the polySi gate heights are substantially the same across the entire surface of a semiconductor structure.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: June 6, 2006
    Assignee: International Business Machines Corporation
    Inventors: Ricky S. Amos, Diane C. Boyd, Cyril Cabral, Jr., Richard D. Kaplan, Jakub T. Kedzierski, Victor Ku, Woo-Hyeong Lee, Ying Li, Anda C. Mocuta, Vijay Narayanan, An L. Steegen, Maheswaran Surendra
  • Publication number: 20060024934
    Abstract: The present invention provides a method for retarding the diffusion of dopants from a first material layer (typically a semiconductor) into an overlayer or vice versa. In the method of the present invention, diffusion of dopants from the first semiconductor into the overlayer or vice versa is retarded by forming a monolayer comprising carbon and oxygen between the two layers. The monolayer is formed in the present invention utilizing a chemical pretreatment process in which a solution including iodine and an alcohol such as methanol is employed.
    Type: Application
    Filed: July 30, 2004
    Publication date: February 2, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin Chan, Huajie Chen, Michael Gribelyuk, Judson Holt, Woo-Hyeong Lee, Ryan Mitchell, Renee Mo, Dan Mocuta, Werner Rausch, Paul Ronsheim, Henry Utomo
  • Publication number: 20050186747
    Abstract: The present invention provides a complementary metal oxide semiconductor integration process whereby a plurality of silicided metal gates are fabricated atop a gate dielectric. Each silicided metal gate that is formed using the integration scheme of the present invention has the same silicide metal phase and substantially the same height, regardless of the dimension of the silicide metal gate. The present invention also provides various methods of forming a CMOS structure having silicided contacts in which the polySi gate heights are substantially the same across the entire surface of a semiconductor structure.
    Type: Application
    Filed: February 25, 2004
    Publication date: August 25, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ricky Amos, Diane Boyd, Cyril Cabral, Richard Kaplan, Jakub Kedzierski, Victor Ku, Woo-Hyeong Lee, Ying Li, Anda Mocuta, Vijay Narayanan, An Steegen, Maheswaran Surendra
  • Publication number: 20050158924
    Abstract: A method of forming polycrystalline silicon with ultra-small grain sizes employs a differential heating of the upper and lower sides of the substrate of a CVD apparatus, in which the lower side of the substrate receives considerably more power than the upper side, preferable more than 75% of the power; and in which the substrate is maintained during deposition at a temperature more than 50° C. above the 550° C. crystallization temperature of silicon.
    Type: Application
    Filed: January 20, 2004
    Publication date: July 21, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ashima Chakravarti, Bruce Doris, Romany Ghali, Oleg Gluschenkov, Michael Gribelyuk, Woo-Hyeong Lee, Anita Madan
  • Publication number: 20050085054
    Abstract: A compound that includes at least Si, N and C in any combination, such as compounds of formula (R—NH)4-nSiXn wherein R is an alkyl group (which may be the same or different), n is 1, 2 or 3, and X is H or halogen (such as, e.g., bis-tertiary butyl amino silane (BTBAS)), may be mixed with silane or a silane derivative to produce a film. A polysilicon silicon film may be grown by mixing silane (SiH4) or a silane derviative and a compound including Si, N and C, such as BTBAS. Films controllably doped with carbon and/or nitrogen (such as layered films) may be grown by varying the reagents and conditions.
    Type: Application
    Filed: October 15, 2003
    Publication date: April 21, 2005
    Inventors: Ashima Chakravarti, Anita Madan, Woo-Hyeong Lee, Gregory Dibello, Ramaseshan Iyer
  • Patent number: 5923056
    Abstract: A doped, metal oxide dielectric material and electronic components made with this material are disclosed. The metal oxide is a Group III or Group VB metal oxide (e.g. Al.sub.2 O.sub.3, Y.sub.2 O.sub.3, Ta.sub.2 O.sub.5 or V.sub.2 O.sub.5) and the metal dopant is a Group IV material (Zr, Si, Ti, and Hf). The metal oxide contains about 0.1 weight percent to about 30 weight percent of the dopant. The doped, metal oxide dielectric of the present invention is used in a number of different electronic components and devices. For example, the doped, metal oxide dielectric is used as the gate dielectric for MOS devices. The doped, metal oxide dielectric is also used as the inter-poly dielectric material for flash memory devices.
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: July 13, 1999
    Assignee: Lucent Technologies Inc.
    Inventors: Woo-Hyeong Lee, Lalita Manchanda