Patents by Inventor Xiaowei Wu

Xiaowei Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11008653
    Abstract: A multi-layer coating for a surface of an article comprises a diffusion barrier layer and an erosion resistant layer. The diffusion barrier layer may be a nitride film including but not limited to TiNx, TaNx, Zr3N4, and TiZrxNy. The erosion resistant layer may be a rare oxide film comprising YZrxOy. The diffusion barrier layer and the erosion resistant layer may be deposited on the article's surface using a thin film deposition technique including but not limited to, ALD, PVD, and CVD.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: May 18, 2021
    Assignee: Applied Materials, Inc.
    Inventors: David Fenwick, Xiaowei Wu, Jennifer Y. Sun
  • Patent number: 10755900
    Abstract: A method of applying a multi-layer plasma resistant coating on an article comprises performing plating or ALD to form a conformal first plasma resistant layer on an article, wherein the conformal first plasma resistant layer is formed on a surface of the article and on walls of high aspect ratio features in the article. The conformal first plasma resistant coating has a porosity of approximately 0% and a thickness of approximately 200 nm to approximately 1 micron. One of electron beam ion assisted deposition (EB-IAD), plasma enhanced chemical vapor deposition (PECVD), aerosol deposition or plasma spraying is then performed to form a second plasma resistant layer that covers the conformal first plasma resistant layer at a region of the surface but not at the walls of the high aspect ratio features.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: August 25, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Toan Tran, Laksheswar Kalita, Tae Won Kim, Dmitry Lubomirsky, Xiaowei Wu, Xiao-Ming He, Cheng-Hsuan Chou, Jennifer Y. Sun
  • Publication number: 20200181771
    Abstract: Certain embodiments of the present disclosure relate to coated articles and methods of coating articles. In one embodiment, a coated article comprises an article adapted for use in a processing chamber, and a coating formed on exterior and interior surfaces of the article. In one embodiment, the coating comprises a rare earth metal-containing ceramic, and the coating is substantially uniform, conformal, and porosity-free.
    Type: Application
    Filed: December 6, 2018
    Publication date: June 11, 2020
    Inventors: Xiaowei Wu, Jennifer Y. Sun, Michael R. Rice
  • Publication number: 20200185203
    Abstract: A substrate support assembly includes a ground shield and a heater that is surrounded by the ground shield. The ground shield includes a plate. In one embodiment, the ground shield is composed of a ceramic body and includes an electrically conductive layer, a first protective layer on the upper surface of the plate. In another embodiment, the ground shield is composed of an electrically conductive body and a first protective layer on the upper surface of the plate.
    Type: Application
    Filed: December 6, 2018
    Publication date: June 11, 2020
    Inventors: Dmitry Lubomirsky, Xiao Ming He, Jennifer Y. Sun, Xiaowei Wu, Laksheswar Kalita, Soonam Park
  • Publication number: 20200185200
    Abstract: Described herein are articles, systems and methods where a plasma resistant coating is deposited onto a surface of a chamber component using an atomic layer deposition (ALD) process. The plasma resistant coating has a stress relief layer and a layer comprising a solid solution of Y2O3—ZrO2 and uniformly covers features, such as those having an aspect ratio of about 3:1 to about 300:1.
    Type: Application
    Filed: January 6, 2020
    Publication date: June 11, 2020
    Inventors: Xiaowei Wu, David Fenwick, Jennifer Y. Sun, Guodong Zhan
  • Publication number: 20200140996
    Abstract: An article comprises a body having a coating. The coating comprises a Y—O—F coating or other yttrium-based oxy-fluoride coating generated either by performing a fluorination process on a yttrium-based oxide coating or an oxidation process on a yttrium-based fluorine coating.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventors: Xiaowei Wu, David Fenwick, Guodong Zhan, Jennifer Y. Sun, Michael R. Rice
  • Patent number: 10573497
    Abstract: Described herein are articles, systems and methods where a plasma resistant coating is deposited onto a surface of a chamber component using an atomic layer deposition (ALD) process. The plasma resistant coating has a stress relief layer and a layer comprising a solid solution of Y2O3—ZrO2 and uniformly covers features, such as those having an aspect ratio of about 3:1 to about 300:1.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: February 25, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Xiaowei Wu, David Fenwick, Jennifer Y. Sun, Guodong Zhan
  • Patent number: 10563303
    Abstract: An article comprises a body having a coating. The coating comprises a Y-O-F coating or other yttrium-based oxy-fluoride coating generated either by performing a fluorination process on a yttrium-based oxide coating or an oxidation process on a yttrium-based fluorine coating.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: February 18, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Xiaowei Wu, David Fenwick, Guodong Zhan, Jennifer Y. Sun, Michael R. Rice
  • Publication number: 20200024735
    Abstract: Embodiments of the present disclosure relate to articles, coated articles and methods of coating such articles with a rare earth metal containing fluoride coating. The coating can contain at least a first metal (e.g., a rare earth metal, tantalum, zirconium, etc.) and a second metal that have been co-deposited onto a surface of the article. The coating can include a homogenous mixture of the first metal and the second metal and does not contain mechanical segregation between layers in the coating.
    Type: Application
    Filed: November 29, 2018
    Publication date: January 23, 2020
    Inventors: Xiaowei Wu, Jennifer Y. Sun, Michael R. Rice
  • Publication number: 20200024194
    Abstract: Embodiments of the present disclosure relate to articles, coated articles and methods of coating such articles with a rare earth metal containing oxide coating. The coating can contain at least a first metal (e.g., a rare earth metal, tantalum, zirconium, etc.) and a second metal that have been co-deposited onto a surface of the article. The coating can include a homogenous mixture of the first metal and the second metal and does not contain mechanical segregation between layers in the coating.
    Type: Application
    Filed: July 18, 2018
    Publication date: January 23, 2020
    Inventors: Xiaowei Wu, Jennifer Y. Sun, Michael R. Rice
  • Publication number: 20200011558
    Abstract: The present invention relates to device control for a predetermined area of space and belongs to the technical field of intelligent control of devices. A control system provided by the present invention comprises: a sensing component installed in the predetermined area of space and used for sensing the predetermined area of space to at least determine density information of living beings in the predetermined area of space, and an HVAC control and management unit of an HVAC system, wherein the sensing component is interactively connected with the HVAC control and management unit in a wireless communication mode, and the HVAC control and management unit is configured to control one or more air end devices at least based on the determined density information of living beings.
    Type: Application
    Filed: December 20, 2017
    Publication date: January 9, 2020
    Inventors: Jianwei Zhao, Xiaowei Wu, Hon Ming Ng
  • Publication number: 20190382888
    Abstract: Disclosed herein is a rare-earth oxide coating on a surface of an article with one or more interruption layers to control crystal growth and methods of its formation. The coating may be deposited by atomic layer deposition and/or by chemical vapor deposition. The rare-earth oxides in the coatings disclosed herein may have an atomic crystalline phase that is different from the atomic crystalline phase or the amorphous phase of the one or more interruption layers.
    Type: Application
    Filed: August 21, 2019
    Publication date: December 19, 2019
    Inventors: Xiaowei Wu, Jennifer Y. Sun, Michael R. Rice
  • Publication number: 20190376202
    Abstract: An enhanced anodization method includes forming a porous anodization layer comprising columns of anodization layer material with pores between adjacent columns. The method further includes sealing the porous layer by forming a sealing layer at a top of the porous layer. The sealing layer may be formed by using a hybrid sealing process that combines, in any order, two or more of de-ionized (DI) water seal, Ni sealing, and, PTFE sealing. Alternatively, the sealing layer is formed by conformally coating the columns in the porous layer with one or more layers of a coating material. Further, the coating material may be surface-fluorinated to improve plasma resistance.
    Type: Application
    Filed: June 6, 2019
    Publication date: December 12, 2019
    Inventors: Xiao-Ming HE, Jennifer Y. SUN, David FENWICK, Cheng-Hsuan CHOU, Xiaowei WU, Chidambara A. RAMALINGAM, Michael R. RICE
  • Publication number: 20190338418
    Abstract: Described herein are articles, systems and methods where a halogen resistant coating is deposited onto a surface of a chamber component using an atomic layer deposition (ALD) process. The halogen resistant coating has an optional amorphous seed layer and a transition metal-containing layer. The halogen resistant coating uniformly covers features of the chamber component, such as those having an aspect ratio of about 3:1 to about 300:1.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Inventors: Prerna Goradia, Jennifer Y. Sun, Xiaowei Wu, Geetika Bajaj, Atul Chaudhari, Ankur Kadam
  • Publication number: 20190330742
    Abstract: Methods for forming a porous coating with a controlled porosity and pore size are described. The methods include mixing a first powder comprising a first material with a second powder comprising a second material to form a mixed powder comprising 30-99 vol. % of the first powder and 1-70 vol. % of the second powder. The methods further include performing cold spray coating to deposit a coating comprising the first material and the second material onto an article, wherein the coating comprises approximately 30-99 vol. % of the first material and 1-70 vol. % of the second material. The methods further include performing a post-coating process to remove the second material from the coating, wherein after the post-coating process the coating consists essentially of the first material and has a porosity that is approximately equivalent to a volume occupied by the second material prior to the post-coating process.
    Type: Application
    Filed: April 27, 2018
    Publication date: October 31, 2019
    Inventors: Xiaowei Wu, Jennifer Y. Sun
  • Patent number: 10443126
    Abstract: Disclosed herein is a rare-earth oxide coating on a surface of an article with one or more interruption layers to control crystal growth and methods of its formation. The coating may be deposited by atomic layer deposition and/or by chemical vapor deposition. The rare-earth oxides in the coatings disclosed herein may have an atomic crystalline phase that is different from the atomic crystalline phase or the amorphous phase of the one or more interruption layers.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: October 15, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Xiaowei Wu, Jennifer Y. Sun, Michael R. Rice
  • Patent number: 10443125
    Abstract: An article comprises a body having a coating. The coating comprises a Y—O—F coating or other yttrium-based oxy-fluoride coating generated either by performing a fluorination process on a yttrium-based oxide coating or an oxidation process on a yttrium-based fluorine coating.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: October 15, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Xiaowei Wu, David Fenwick, Guodong Zhan, Jennifer Y. Sun, Michael R. Rice
  • Publication number: 20190309413
    Abstract: Disclosed herein is a rare-earth oxide coating on a surface of an article with one or more interruption layers to control crystal growth and methods of its formation. The coating may be deposited by atomic layer deposition and/or by chemical vapor deposition. The rare-earth oxides in the coatings disclosed herein may have an atomic crystalline phase that is different from the atomic crystalline phase or the amorphous phase of the one or more interruption layers.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 10, 2019
    Inventors: Xiaowei Wu, Jennifer Y. Sun, Michael R. Rice
  • Patent number: D853363
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: July 9, 2019
    Assignee: Airgain Incorporated
    Inventors: Bei Zheng, Xiangjie Bian, Xiaowei Wu
  • Patent number: D907016
    Type: Grant
    Filed: January 13, 2018
    Date of Patent: January 5, 2021
    Assignee: Airgain, Inc.
    Inventors: Ziming He, Xiangjie Bian, Xiaowei Wu