Patents by Inventor Xinliang Lu

Xinliang Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9048183
    Abstract: Embodiments provide methods for depositing metal-containing materials. The methods include deposition processes that form metal, metal carbide, metal silicide, metal nitride, and metal carbide derivatives by a vapor deposition process, including thermal decomposition, CVD, pulsed-CVD, or ALD. A method for processing a substrate is provided which includes depositing a dielectric material forming a feature definition in the dielectric material, depositing a work function material conformally on the sidewalls and bottom of the feature definition, and depositing a metal gate fill material on the work function material to fill the feature definition, wherein the work function material is deposited by reacting at least one metal-halide precursor having the formula MXY, wherein M is tantalum, hafnium, titanium, and lanthanum, X is a halide selected from the group of fluorine, chlorine, bromine, or iodine, and y is from 3 to 5.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: June 2, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Seshadri Ganguli, Srinivas Gandikota, Yu Lei, Xinliang Lu, Sang Ho Yu, Hoon Kim, Paul F. Ma, Mei Chang, Maitreyee Mahajani, Patricia M. Liu
  • Publication number: 20150086722
    Abstract: Embodiments described herein relate to a thermal chlorine gas cleaning process. In one embodiment, a method for cleaning N-Metal film deposition in a processing chamber includes positioning a dummy substrate on a substrate support. The processing chamber is heated to at least about 50 degrees Celsius. The method further includes flowing chlorine gas into the processing chamber and evacuating chlorine gas from the processing chamber. In another embodiment, a method for cleaning titanium aluminide film deposition in a processing chamber includes heating the processing chamber to a temperature between about 70 about degrees Celsius and about 100 degrees Celsius, wherein the processing chamber and the substrate support include one or more fluid channels configured to heat or cool the processing chamber and the substrate support.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 26, 2015
    Applicant: Applied Materials, Inc.
    Inventors: Srinivas GANDIKOTA, Xinliang LU, Kyoung-Ho BU, Jing ZHOU, Seshadri GANGULI, David THOMPSON
  • Patent number: 8987080
    Abstract: Provided are methods for making metal gates suitable for FinFET structures. The methods described herein generally involve forming a high-k dielectric material on a semiconductor substrate; depositing a high-k dielectric cap layer over the high-k dielectric material; depositing a PMOS work function layer having a positive work function value; depositing an NMOS work function layer; depositing an NMOS work function cap layer over the NMOS work function layer; removing at least a portion of the PMOS work function layer or at least a portion of the NMOS work function layer; and depositing a fill layer. Depositing a high-k dielectric cap layer, depositing a PMOS work function layer or depositing a NMOS work function cap layer may comprise atomic layer deposition of TiN, TiSiN, or TiAlN. Either PMOS or NMOS may be deposited first.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: March 24, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Xinliang Lu, Seshadri Ganguli, Atif Noori, Maitreyee Mahajani, Shih Chung Chen, Yu Lei, Xinyu Fu, Wei Tang, Srinivas Gandikota
  • Patent number: 8927059
    Abstract: Methods of depositing pure metal and aluminum alloy metal films. Certain methods comprises contacting a substrate surface with first and second precursors, the first precursor comprising an aluminum precursor selected from dimethylaluminum hydride, alane coordinated to an amine, and a compound having a structure represented by: wherein R is a C1-C6 alkyl group, and the second precursor comprising a metal halide. Other methods relate to sequentially exposing a substrate to a first and second precursor, the first precursor comprising an aluminum precursor as described above, and the second precursor comprising Ti(NR?2)4 or Ta(NR?2)5, wherein R? is an alkyl, alkenyl, alkynyl, keto or aldehyde group.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: January 6, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Xinliang Lu, David Thompson, Jeffrey W. Anthis, Mei Chang, Seshadri Ganguli, Wei Tang, Srinivas Gandikota, Atif Noori
  • Patent number: 8895443
    Abstract: Provided are methods of depositing N-Metals onto a substrate. Some methods comprise providing an initiation layer of TaM or TiM layer on a substrate, wherein M is selected from aluminum, carbon, noble metals, gallium, silicon, germanium and combinations thereof; and exposing the substrate having the TaM or TiM layer to a treatment process comprising soaking the surface of the substrate with a reducing agent to provided a treated initiation layer.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: November 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Seshadri Ganguli, Xinliang Lu, Atif Noori, Maitreyee Mahajani, Shih Chung Chen, Mei Chang
  • Patent number: 8846163
    Abstract: A method for removing native oxides from a substrate surface is provided. In one embodiment, the method comprises positioning a substrate having an oxide layer into a processing chamber, exposing the substrate to a gas mixture while forming a volatile film on the substrate and maintaining the substrate at a temperature below 65° C., heating the substrate to a temperature of at least about 75° C. to sublimate the volatile film and remove the oxide layer, and depositing a first layer on the substrate after heating the substrate.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: September 30, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Chien-Teh Kao, Jing-Pei (Connie) Chou, Chiukin (Steven) Lai, Sal Umotoy, Joel M. Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei W. Wang, See-Eng Phan
  • Publication number: 20140120712
    Abstract: Embodiments provide methods for depositing metal-containing materials. The methods include deposition processes that form metal, metal carbide, metal silicide, metal nitride, and metal carbide derivatives by a vapor deposition process, including thermal decomposition, CVD, pulsed-CVD, or ALD. A method for processing a substrate is provided which includes depositing a dielectric material forming a feature definition in the dielectric material, depositing a work function material conformally on the sidewalls and bottom of the feature definition, and depositing a metal gate fill material on the work function material to fill the feature definition, wherein the work function material is deposited by reacting at least one metal-halide precursor having the formula MXY, wherein M is tantalum, hafnium, titanium, and lanthanum, X is a halide selected from the group of fluorine, chlorine, bromine, or iodine, and y is from 3 to 5.
    Type: Application
    Filed: January 3, 2014
    Publication date: May 1, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Seshadri GANGULI, Srinivas GANDIKOTA, Yu LEI, Xinliang LU, Sang Ho YU, Hoon KIM, Paul F. MA, Mei CHANG, Maitreyee MAHAJANI, Patricia M. LIU
  • Publication number: 20140112824
    Abstract: Provided are films comprising aluminum, carbon and a metal, wherein the aluminum is present in an amount greater than about 16% by elemental content and less than about 50% carbon. Also provided are methods of depositing the same.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 24, 2014
    Inventors: David Thompson, Srinivas Gandikota, Xinliang Lu, Wei Tang, Jing Zhou, Seshadri Ganguli, Jeffrey W. Anthis, Atif Noori, Faruk Gungor, Dien-Yeh Wu, Mei Chang, Shih Chung Chen
  • Publication number: 20140076234
    Abstract: A multi-chamber processing system includes a transfer chamber, a first processing chamber outfitted to perform CVD, a second processing chamber, and a robot positioned to transfer substrates between the transfer chamber, the first processing chamber, and the second processing chamber. The second processing chamber may include one or a combination of a first electrode and a second electrode comprising a plasma cavity formed therein.
    Type: Application
    Filed: October 18, 2013
    Publication date: March 20, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Chien-Teh KAO, Jing-Pei Connie CHOU, Chiukin (Steven) LAI, Salvador P. UMOTOY, Joel M. HUSTON, Son TRINH, Mei CHANG, Xiaoxiong YUAN, Yu CHANG, Xinliang LU, Wei W. WANG, See-Eng PHAN
  • Patent number: 8642468
    Abstract: Embodiments of the invention generally provide methods for depositing metal-containing materials and compositions thereof. The methods include deposition processes that form metal, metal carbide, metal silicide, metal nitride, and metal carbide derivatives by a vapor deposition process, including thermal decomposition, CVD, pulsed-CVD, or ALD.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: February 4, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Seshadri Ganguli, Srinivas Gandikota, Yu Lei, Xinliang Lu, Sang Ho Yu, Hoon Kim, Paul F. Ma, Mei Chang, Maitreyee Mahajani, Patricia M. Liu
  • Patent number: 8637410
    Abstract: Methods for formation and treatment of pure metal layers using CVD and ALD techniques are provided. In one or more embodiments, the method includes forming a metal precursor layer and treating the metal precursor layer to a hydrogen plasma to reduce the metal precursor layer to form a metal layer. In one or more embodiments, treating the metal precursor layer includes exposing the metal precursor layer to a high frequency-generated hydrogen plasma. Methods of preventing a hydrogen plasma from penetrating a metal precursor layer are also provided.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: January 28, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Anantha K. Subramani, John C. Forster, Seshadri Ganguli, Michael S. Jackson, Xinliang Lu, Wei W. Wang, Xinyu Fu, Yu Lei
  • Publication number: 20140017408
    Abstract: Provided are methods of depositing films comprising alloys of aluminum, which may be suitable as N-metal films. Certain methods comprise exposing a substrate surface to a metal halide precursor comprising a metal halide selected from TiCl4, TaCl5 and HfCl4 to provide a metal halide at the substrate surface; purging metal halide; exposing the substrate surface to an alkyl aluminum precursor comprising one or more of dimethyaluminum hydride, diethylhydridoaluminum, methyldihydroaluminum, and an alkyl aluminum hydrides of the formula [(CxHy)3-aAlHa]n, wherein x has a value of 1 to 3, y has a value of 2x+2, a has a value of 1 to 2, and n has a value of 1 to 4; and exposing the substrate surface to an alane-containing precursor comprising one or more of dimethylethylamine alane, methylpyrrolidinealane, di(methylpyrolidine)alane, and trimethyl amine alane borane. Other methods comprise exposing a substrate surface to a metal precursor and trimethyl amine alane borane.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 16, 2014
    Inventors: Srinivas Gandikota, Xinliang Lu, Shih Chung Chen, Wei Tang, Jing Zhou, Seshadri Ganguli, David Thompson, Jeffrey W. Anthis, Atif Noori, Faruk Gungor, Dien-Yeh Wu, Mei Chang, Xinyu Fu, Yu Lei
  • Patent number: 8592305
    Abstract: Provided are methods of providing aluminum-doped TaSix films. Doping TaSix films allows for the tuning of the work function value to make the TaSix film better suited as an N-metal for NMOS applications. One such method relates to soaking a TaSix film with an aluminum-containing compound. Another method relates to depositing a TaSix film, soaking with an aluminum-containing compound, and repeating for a thicker film. A third method relates to depositing an aluminum-doped TaSix film using tantalum, aluminum and silicon precursors.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: November 26, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Xinliang Lu, Seshadri Ganguli, Shih Chung Chen, Atif Noori, Maitreyee Mahajani, Mei Chang
  • Publication number: 20130295759
    Abstract: Provided are methods for making metal gates suitable for FinFET structures. The methods described herein generally involve forming a high-k dielectric material on a semiconductor substrate; depositing a high-k dielectric cap layer over the high-k dielectric material; depositing a PMOS work function layer having a positive work function value; depositing an NMOS work function layer; depositing an NMOS work function cap layer over the NMOS work function layer; removing at least a portion of the PMOS work function layer or at least a portion of the NMOS work function layer; and depositing a fill layer. Depositing a high-k dielectric cap layer, depositing a PMOS work function layer or depositing a NMOS work function cap layer may comprise atomic layer deposition of TiN, TiSiN, or TiAlN. Either PMOS or NMOS may be deposited first.
    Type: Application
    Filed: April 18, 2013
    Publication date: November 7, 2013
    Inventors: Xinliang Lu, Seshadri Ganguli, Atif Noori, Maitreyee Mahajani, Shih Chung Chen, Yu Lei, Xinyu Fu, Wei Tang, Srinivas Gandikota
  • Publication number: 20130122697
    Abstract: Provided are methods of providing aluminum-doped TaSix films. Doping TaSix films allows for the tuning of the work function value to make the TaSix film better suited as an N-metal for NMOS applications. One such method relates to soaking a TaSix film with an aluminum-containing compound. Another method relates to depositing a TaSix film, soaking with an aluminum-containing compound, and repeating for a thicker film. A third method relates to depositing an aluminum-doped TaSix film using tantalum, aluminum and silicon precursors.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 16, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Xinliang Lu, Seshadri Ganguli, Michael S. Chen, Atif Noori, Shih Chung Chen, Maitreyee Mahajani, Mei Chang
  • Publication number: 20130115383
    Abstract: Provided are methods of depositing pure metal and aluminum alloy metal films. Certain methods comprises contacting a substrate surface with first and second precursors, the first precursor comprising an aluminum precursor selected from dimethylaluminum hydride, alane coordinated to an amine, and a compound having a structure represented by: wherein R is a C1-C6 alkyl group, and the second precursor comprising a metal halide. Other methods relate to sequentially exposing a substrate to a first and second precursor, the first precursor comprising an aluminum precursor as described above, and the second precursor comprising Ti(NR?2)4 or Ta(NR?2)5, wherein R? is an alkyl, alkenyl, alkynyl, keto or aldehyde group.
    Type: Application
    Filed: November 6, 2012
    Publication date: May 9, 2013
    Inventors: Xinliang Lu, David Thompson, Jeffrey W. Anthis, Mei Chang, Seshadri Ganguli, Wei Tang, Srinivas Gandikota, Atif Noori
  • Publication number: 20120322250
    Abstract: Provided are methods of depositing N-Metals onto a substrate. Some methods comprise providing an initiation layer of TaM or TiM layer on a substrate, wherein M is selected from aluminum, carbon, noble metals, gallium, silicon, germanium and combinations thereof; and exposing the substrate having the TaM or TiM layer to a treatment process comprising soaking the surface of the substrate with a reducing agent to provided a treated initiation layer.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 20, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Seshadri Ganguli, Xinliang Lu, Atif Noori, Maitreyee Mahajani, Shih Chung Chen, Mei Chang
  • Publication number: 20120322262
    Abstract: Provided are methods of depositing N-Metals onto a substrate. Methods include first depositing an initiation layer. The initiation layer may comprise or consist of cobalt, tantalum, nickel, titanium or TaAlC. These initiation layers can be used to deposit TaCx.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 20, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Seshadri Ganguli, Xinliang Lu, Atif Noori, Maitreyee Mahajani, Shih Chung Chen, Mei Chang
  • Patent number: 8318605
    Abstract: Formation of BPSG surface defects upon exposure to atmosphere is prevented by a plasma treatment method for converting boron and/or phosphorus materials separated from silicon near the surface of the doped glass layer to gas phase compounds. The treatment plasma is generated from a treatment process gas containing one of (a) a fluorine compound or (b) a hydrogen compound.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: November 27, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Chien-Teh Kao, Haichun Yang, Xinliang Lu, Mei Chang
  • Publication number: 20120258602
    Abstract: Methods for formation and treatment of pure metal layers using CVD and ALD techniques are provided. In one or more embodiments, the method includes forming a metal precursor layer and treating the metal precursor layer to a hydrogen plasma to reduce the metal precursor layer to form a metal layer. In one or more embodiments, treating the metal precursor layer includes exposing the metal precursor layer to a high frequency-generated hydrogen plasma. Methods of preventing a hydrogen plasma from penetrating a metal precursor layer are also provided.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 11, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Anantha K. Subramani, John C. Forster, Seshadri Ganguli, Michael S. Jackson, Xinliang Lu, Wei W. Wang, Xinyu Fu, Yu Lei