Patents by Inventor Xinliang Lu

Xinliang Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120244704
    Abstract: A method for removing native oxides from a substrate surface is provided. In one embodiment, the method comprises positioning a substrate having an oxide layer into a processing chamber, exposing the substrate to a gas mixture while forming a volatile film on the substrate and maintaining the substrate at a temperature below 65° C., heating the substrate to a temperature of at least about 75° C. to sublimate the volatile film and remove the oxide layer, and depositing a first layer on the substrate after heating the substrate.
    Type: Application
    Filed: June 5, 2012
    Publication date: September 27, 2012
    Inventors: Chien-Teh KAO, Jing-Pei(Connie) CHOU, Chiukin(Steven) LAI, Sal UMOTOY, Joel M. HUSTON, Son TRINH, Mei CHANG, Xiaoxiong (John) YUAN, Yu CHANG, Xinliang LU, Wei W. WANG, See-Eng PHAN
  • Patent number: 8268684
    Abstract: Embodiments of the present invention generally relates to an apparatus and a method for processing semiconductor substrates. Particularly, embodiments of the present invention relates to methods and apparatus for profile modification prior to filling a structure, such as a trench or a via. One embodiment of the present invention comprises forming a sacrifice layer to pinch off a top opening of a structure by exposing the structure to an etchant. In one embodiment, the etchant is configured to remove the first material by reacting with the first material and generating a by-product, which forms the sacrifice layer.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: September 18, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Mei Chang, Chien-Teh Kao, Xinliang Lu, Zhenbin Ge
  • Patent number: 8252696
    Abstract: Methods for etching dielectric layers comprising silicon and nitrogen are provided herein. In some embodiments, such methods may include providing a substrate having a dielectric layer comprising silicon and nitrogen disposed thereon, forming reactive species from a process gas comprising hydrogen (H2) and nitrogen trifluoride (NF3) using a remote plasma; and etching the dielectric layer using the reactive species. In some embodiments, an oxide layer is disposed adjacent to the dielectric layer. In some embodiments, the flow rate ratio of the process gas can be adjusted such that an etch selectivity of the dielectric layer to at least one of the oxide layer or the substrate is between about 0.8 to about 4.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: August 28, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Xinliang Lu, Haichun Yang, Zhenbin Ge, Nan Lu, David T. Or, Chien-Teh Kao, Mei Chang
  • Publication number: 20110294258
    Abstract: Embodiments of the present invention generally relates to an apparatus and a method for processing semiconductor substrates. Particularly, embodiments of the present invention relates to methods and apparatus for profile modification prior to filling a structure, such as a trench or a via. One embodiment of the present invention comprises forming a sacrifice layer to pinch off a top opening of a structure by exposing the structure to an etchant. In one embodiment, the etchant is configured to remove the first material by reacting with the first material and generating a by-product, which forms the sacrifice layer.
    Type: Application
    Filed: August 8, 2011
    Publication date: December 1, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: MEI CHANG, Chien-Teh Kao, Xinliang Lu, Zhenbin Ge
  • Publication number: 20110263115
    Abstract: Embodiments of the invention generally provide methods for depositing metal-containing materials and compositions thereof. The methods include deposition processes that form metal, metal carbide, metal silicide, metal nitride, and metal carbide derivatives by a vapor deposition process, including thermal decomposition, CVD, pulsed-CVD, or ALD.
    Type: Application
    Filed: April 25, 2011
    Publication date: October 27, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Seshadri Ganguli, Srinivas Gandikota, Yu Lei, Xinliang Lu, Sang Ho Yu, Hoon Kim, Paul F. Ma, Mei Chang, Maitreyee Mahajani, Patricia M. Liu
  • Patent number: 8043933
    Abstract: Embodiments of the present invention generally relates to an apparatus and a method for processing semiconductor substrates. Particularly, embodiments of the present invention relates to apparatus and methods for forming shallow trench isolations having recesses with rounded bottoms. One embodiment of the present invention comprises forming a recess in a filled trench structure by removing a portion of a material from the filled trench structure and rounding bottom corners of the recess. Rounding bottom corners is performed by depositing a conformal layer of the same material filled in the trench structure over the substrate and removing the conformal layer of the material from sidewalls of the recess.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: October 25, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Chien-Teh Kao, Xinliang Lu, Zhenbin Ge, Mei Chang, Hoiman Raymond Hung, Nitin Ingle
  • Publication number: 20110223755
    Abstract: A method for removing native oxides from a substrate surface is provided. In one embodiment, the method comprises positioning a substrate having an oxide layer into a processing chamber, generating a plasma of a reactive species from a gas mixture within the processing chamber, exposing the substrate to the reactive species while forming a volatile film on the substrate and maintaining the substrate at a temperature below 65° C., heating the substrate to a temperature of at least about 75° C. to vaporize the volatile film and remove the oxide layer, and depositing a first layer on the substrate after heating the substrate.
    Type: Application
    Filed: May 20, 2011
    Publication date: September 15, 2011
    Inventors: CHIEN-TEH KAO, Jing-Pei(Connie) Chou, Chiukin(Steven) Lai, Sal Umotoy, Joel M. Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei W. Wang, See-Eng Phan
  • Patent number: 7994002
    Abstract: Embodiments of the present invention generally relates to an apparatus and a method for processing semiconductor substrates. Particularly, embodiments of the present invention relates to methods and apparatus for trench and via profile modification prior to filling the trench and via. One embodiment of the present invention comprises forming a sacrifice layer to pinch off a top opening of a trench structure by exposing the trench structure to an etchant. In one embodiment, the etchant is configured to remove the first material by reacting with the first material and generating a by-product, which forms the sacrifice layer.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: August 9, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Mei Chang, Chien-Teh Kao, Xinliang Lu, Zhenbin Ge
  • Patent number: 7977246
    Abstract: A thermal anneal process for preventing formation of certain BPSG surface defects following an etch or silicon clean step using a fluorine and hydrogen chemistry. The thermal anneal process is carried out while protecting the wafer from moisture, by heating the wafer to a sufficiently high temperature for a sufficient duration of time to thermally diffuse boron and/or phosphorus materials separated from silicon near the surface of the doped glass layer into the bulk of the layer. The thermal anneal process is completed by cooling the wafer to a sufficiently low temperature to fix the distribution of the boron and/or phosphorus materials in bulk of the doped glass layer.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: July 12, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Haichun Yang, Chien-Teh Kao, Xinliang Lu, Mei Chang
  • Publication number: 20110151676
    Abstract: A method for forming a semiconductor structure includes forming a plurality of features across a surface of a substrate, with at least one space being between two adjacent features. A first dielectric layer is formed on the features and within the at least one space. A portion of the first dielectric layer interacts with a reactant derived from a first precursor and a second precursor to form a first solid product. The first solid product is decomposed to substantially remove the portion of the first dielectric layer. A second dielectric layer is formed to substantially fill the at least one space.
    Type: Application
    Filed: March 3, 2011
    Publication date: June 23, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Jing Tang, Yi Zheng, Zheng Yuan, Zhenbin Ge, Xinliang Lu, Chien-Teh Kao, Vikash Banthia, William H. McClintock, Mei Chang
  • Patent number: 7955510
    Abstract: The present invention generally provides apparatus and methods for selectively removing various oxides on a semiconductor substrate. One embodiment of the invention provides a method for selectively removing an oxide on a substrate at a desired removal rate using an etching gas mixture. The etching gas mixture comprises a first gas and a second gas, and a ratio of the first gas and a second gas is determined by the desired removal rate.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: June 7, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Reza Arghavani, Chien-Teh Kao, Xinliang Lu
  • Patent number: 7939422
    Abstract: A method for forming a semiconductor structure includes forming a plurality of features across a surface of a substrate, with at least one space being between two adjacent features. A first dielectric layer is formed on the features and within the at least one space. A portion of the first dielectric layer interacts with a reactant derived from a first precursor and a second precursor to form a first solid product. The first solid product is decomposed to substantially remove the portion of the first dielectric layer. A second dielectric layer is formed to substantially fill the at least one space.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: May 10, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Jing Tang, Yi Zheng, Zheng Yuan, Zhenbin Ge, Xinliang Lu, Chien-Teh Kao, Vikash Banthia, William H. McClintock, Mei Chang
  • Publication number: 20110104897
    Abstract: Embodiments provide methods for treating a metal silicide contact which includes positioning a substrate having an oxide layer disposed on a metal silicide contact surface within a processing chamber, cleaning the metal silicide contact surface to remove the oxide layer while forming a cleaned silicide contact surface during a cleaning process, and exposing the cleaned silicide contact surface to a silicon-containing compound to form a recovered silicide contact surface during a regeneration process. In some examples, the cleaning of the metal silicide contact surface includes cooling the substrate to an initial temperature of less than 65° C., forming reactive species from a gas mixture of ammonia and nitrogen trifluoride by igniting a plasma, exposing the oxide layer to the reactive species to form a thin film, and heating the substrate to about 100° C. or greater to remove the thin film from the substrate while forming the cleaned silicide contact surface.
    Type: Application
    Filed: January 11, 2011
    Publication date: May 5, 2011
    Inventors: XINLIANG LU, CHIEN-TEH KAO, CHIUKIN STEVE LAI, MEI CHANG
  • Patent number: 7871926
    Abstract: A method for forming a structure includes forming at least one feature across a surface of a substrate. A nitrogen-containing dielectric layer is formed over the at least one feature. A first portion of the nitrogen-containing layer on at least one sidewall of the at least one feature is removed at a first rate and a second portion of the nitrogen-containing layer over the substrate adjacent to a bottom region of the at least one feature is removed at a second rate. The first rate is greater than the second rate. A dielectric layer is formed over the nitrogen-containing dielectric layer.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: January 18, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Li-Qun Xia, Mihaela Balseanu, Victor Nguyen, Derek R. Witty, Hichem M'Saad, Haichun Yang, Xinliang Lu, Chien-Teh Kao, Mei Chang
  • Patent number: 7867789
    Abstract: Method for recovering treated metal silicide surfaces or layers are provided. In at least one embodiment, a substrate having an at least partially oxidized metal silicide surface disposed thereon is cleaned to remove the oxidized regions to provide an altered metal silicide surface. The altered metal silicide surface is then exposed to one or more silicon-containing compounds at conditions sufficient to recover the metal silicide surface.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: January 11, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Xinliang Lu, Chien-Teh Kao, Chiukin Steve Lai, Mei Chang
  • Patent number: 7780793
    Abstract: Embodiments described herein provide methods for removing native oxide surfaces on substrates while simultaneously passivating the underlying substrate surface. In one embodiment, a method is provided which includes positioning a substrate containing an oxide layer within a processing chamber, adjusting a first temperature of the substrate to about 80° C. or less, generating a cleaning plasma from a gas mixture within the processing chamber, such that the gas mixture contains ammonia and nitrogen trifluoride having an NH3/NF3 molar ratio of about 10 or greater, and condensing the cleaning plasma onto the substrate. A thin film, containing ammonium hexafluorosilicate, is formed in part, from the native oxide during a plasma clean process. The method further includes heating the substrate to a second temperature of about 100° C. or greater within the processing chamber while removing the thin film from the substrate and forming a passivation surface thereon.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: August 24, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Haichun Yang, Xinliang Lu, Chien-Teh Kao, Mei Chang
  • Patent number: 7767024
    Abstract: In one embodiment, a method for removing native oxides from a substrate surface is provided which includes supporting a substrate containing silicon oxide within a processing chamber, generating a plasma of reactive species from a gas mixture within the processing chamber, cooling the substrate to a first temperature of less than about 65° C. within the processing chamber, and directing the reactive species to the cooled substrate to react with the silicon oxide thereon while forming a film on the substrate. The film usually contains ammonium hexafluorosilicate. The method further provides positioning the substrate in close proximity to a gas distribution plate, and heating the substrate to a second temperature of about 100° C. or greater within the processing chamber to sublimate or remove the film. The gas mixture may contain ammonia, nitrogen trifluoride, and a carrier gas.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: August 3, 2010
    Assignee: Appplied Materials, Inc.
    Inventors: Chien-Teh Kao, Jing-Pei (Connie) Chou, Chiukin (Steven) Lai, Sal Umotoy, Joel M. Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei W. Wang, See-Eng Phan
  • Publication number: 20100129958
    Abstract: Embodiments of the present invention generally relates to an apparatus and a method for processing semiconductor substrates. Particularly, embodiments of the present invention relates to methods and apparatus for trench and via profile modification prior to filling the trench and via. One embodiment of the present invention comprises forming a sacrifice layer to pinch off a top opening of a trench structure by exposing the trench structure to an etchant. In one embodiment, the etchant is configured to remove the first material by reacting with the first material and generating a by-product, which forms the sacrifice layer.
    Type: Application
    Filed: November 18, 2009
    Publication date: May 27, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Mei Chang, Chien-Teh Kao, Xinliang Lu, Zhenbin Ge
  • Publication number: 20100129982
    Abstract: Embodiments of the present invention generally relates to an apparatus and a method for processing semiconductor substrates. Particularly, embodiments of the present invention relates to apparatus and methods for forming shallow trench isolations having recesses with rounded bottoms. One embodiment of the present invention comprises forming a recess in a filled trench structure by removing a portion of a material from the filled trench structure and rounding bottom corners of the recess. Rounding bottom corners is performed by depositing a conformal layer of the same material filled in the trench structure over the substrate and removing the conformal layer of the material from sidewalls of the recess.
    Type: Application
    Filed: November 18, 2009
    Publication date: May 27, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Chien-Teh Kao, Xinliang Lu, Zhenbin Ge, Mei Chang, Hoiman Raymond Hung, Nitin Ingle
  • Patent number: 7709385
    Abstract: In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten-containing layer by sequentially exposing a substrate to a processing gas and a tungsten-containing gas during an atomic layer deposition process, wherein the processing gas comprises a boron-containing gas and a nitrogen-containing gas, and forming a tungsten bulk layer over the tungsten-containing layer by exposing the substrate to a deposition gas comprising the tungsten-containing gas and a reactive precursor gas during a chemical vapor deposition process. In one example, the tungsten-containing layer and the tungsten bulk layer are deposited within the same processing chamber.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: May 4, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ming Xi, Ashok Sinha, Moris Kori, Alfred W. Mak, Xinliang Lu, Ken Kaung Lai, Karl A. Littau