Patents by Inventor Yasuaki Tanaka

Yasuaki Tanaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240068066
    Abstract: There is provided a steel sheet having a chemical composition comprising, in mass %, C: 0.05 to 0.25%, Si: 0.2 to 2.0%, Mn: 1.2 to 3.0%, P: 0.030% or less, S: 0.050% or less, Al: 0.01 to 0.55%, N: 0.0100% or less, and Ti: 0.010 to 0.250%, with the balance: Fe and impurities, wherein a random intensity ratio of a texture in a near-surface portion of the steel sheet is 8.0 or less, and a minimum angle formed between a maximum strength orientation in a {110} pole figure of the texture and a normal direction of a rolled surface of the steel sheet is 10° or less.
    Type: Application
    Filed: February 22, 2022
    Publication date: February 29, 2024
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Yasuaki TANAKA, Shohei YABU, Hiroshi SHUTO, Koutarou HAYASHI, Takashi YASUTOMI, Eisaku SAKURADA
  • Patent number: 11655358
    Abstract: A cellulose fiber-reinforced polyolefin resin composition contains a polyolefin resin, a cellulose fiber having a fiber length of 1 ?m or more, an acid-modified elastomer, and high-density polyethylene. In the composition, an amount of the cellulose fiber is 6 to 95 parts by mass relative to 100 parts by mass of the polyolefin resin, an amount of the acid-modified elastomer is 0.5 to 1.2 times by mass the amount of the cellulose fiber; and, an amount of the high-density polyethylene is 15 to 55 parts by mass relative to 100 parts by mass of the polyolefin resin.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: May 23, 2023
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Atsuko Sato, Hitoshi Uchida, Yasuaki Tanaka
  • Publication number: 20230141963
    Abstract: There is provided a steel sheet including a chemical composition consisting of, in mass %: C: 0.03 to 0.25%, Si: 0.1 to 2.0%, Mn: 1.0 to 3.0%, P: 0.200% or less, S: 0.0500% or less, Al: 0.01 to 1.00%, N: 0.0100% or less, and Ti: 0.01 to 0.25%, with the balance: Fe and impurities, and a steel micro-structure containing, in area %: ferrite: 50 to 85%, the balance being one or more kinds selected from martensite, bainite, and retained austenite, and an intensity of ?-fiber is more than 4.0 times in terms of random intensity ratio, and an average KAM value of grains having crystal orientations that form angles within 10° from ?-fiber is 1.30° or less.
    Type: Application
    Filed: March 30, 2021
    Publication date: May 11, 2023
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Yasuaki TANAKA, Hitoshi NIKAIDO, Hiroyuki KAWATA, Natsuko SUGIURA
  • Patent number: 11485844
    Abstract: The present invention relates to a resin composition containing: 100 parts by weight of a polypropylene resin; 0.2 parts by weight to 2 parts by weight of an olefinic elastomer; 2 parts by weight to 5 parts by weight of a talc having an aspect ratio in a range of 35 to 60; 2 parts by weight to 5 parts by weight of a fibrous magnesium sulfate having an average fiber diameter of 0.1 ?m to 2 ?m and an average fiber length of 8 ?m to 30 ?m; and 0.01 parts by weight to 1 part by weight of a metallic soap that is at least one selected from the group consisting of a magnesium salt of a fatty acid and an aluminum salt of a fatty acid.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: November 1, 2022
    Assignees: TOYODA GOSEI CO., LTD., SHIRAISHI CALCIUM KAISHA, LTD.
    Inventors: Atsumasa Sasaki, Yutaka Minamino, Kenichiro Eguchi, Yasuaki Tanaka, Hitoshi Uchida
  • Publication number: 20220325085
    Abstract: A cellulose fiber-reinforced polyolefin resin composition contains a polyolefin resin, a cellulose fiber having a fiber length of 1 ?m or more, an acid-modified elastomer, and high-density polyethylene. In the composition, an amount of the cellulose fiber is 6 to 95 parts by mass relative to 100 parts by mass of the polyolefin resin, an amount of the acid-modified elastomer is 0.5 to 1.2 times by mass the amount of the cellulose fiber; and, an amount of the high-density polyethylene is 15 to 55 parts by mass relative to 100 parts by mass of the polyolefin resin.
    Type: Application
    Filed: February 21, 2022
    Publication date: October 13, 2022
    Inventors: Atsuko SATO, Hitoshi UCHIDA, Yasuaki TANAKA
  • Patent number: 10774412
    Abstract: A hot-dip galvanized cold-rolled steel sheet has a tensile strength of 750 MPa or higher, a composition consisting, in mass percent, C: more than 0.10% and less than 0.25%, Si: more than 0.50% and less than 2.0%, Mn: more than 1.50% and 3.0% or less, and optionally containing one or more types of Ti, Nb, V, Cr, Mo, B, Ca, Mg, REM, and Bi, P: less than 0.050%, S: 0.010% or less, sol. Al: 0.50% or less, and N: 0.010% or less, and a main phase as a low-temperature transformation product and a second phase as retained austenite. The retained austenite volume fraction is more than 4.0% and less than 25.0% of the whole structure, and has an average grain size of less than 0.80 ?m. A number density of retained austenite grains having a grain size of 1.2 ?m or more is 3.0×10?2/?m2 or less.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: September 15, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Norio Imai, Masayuki Wakita, Takuya Nishio, Jun Haga, Kengo Hata, Yasuaki Tanaka, Mitsuru Yoshida, Hiroshi Takebayashi, Suguhiro Fukushima, Toshiro Tomida
  • Publication number: 20200247984
    Abstract: The present invention relates to a resin composition containing: 100 parts by weight of a polypropylene resin; 0.2 parts by weight to 2 parts by weight of an olefinic elastomer; 2 parts by weight to 5 parts by weight of a talc having an aspect ratio in a range of 35 to 60; 2 parts by weight to 5 parts by weight of a fibrous magnesium sulfate having an average fiber diameter of 0.1 ?m to 2 ?m and an average fiber length of 8 ?m to 30 ?m; and 0.01 parts by weight to 1 part by weight of a metallic soap that is at least one selected from the group consisting of a magnesium salt of a fatty acid and an aluminum salt of a fatty acid.
    Type: Application
    Filed: January 27, 2020
    Publication date: August 6, 2020
    Inventors: Atsumasa SASAKI, Yutaka MINAMINO, Kenichiro EGUCHI, Yasuaki TANAKA, Hitoshi UCHIDA
  • Patent number: 10538823
    Abstract: A high-strength steel sheet has a chemical composition comprising C: 0.05-0.20%, Si: 0.02-3.0%, Mn: 0.5-3.0%, P: at most 0.5%, S: at most 0.05%, Cr: 0.05-1.0%, sol. Al: 0.01-1.0%, one or more elements selected from the group consisting of Ti, Nb, Mo, V, and W: a total of 0.002-0.03%, and a remainder of Fe and impurities. The sheet has an average grain diameter of ferrite of at most 3.0 ?m at least in a region of 100-200 ?m in the sheet thickness direction from the surface of the steel sheet. The average spacing in the sheet thickness direction of the remaining structure in this region is at most 3.0 ?m. Mechanical properties include at least 750 MPa tensile strength and at least 13,000 MPa·% (tensile strength×elongation).
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: January 21, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Yasuaki Tanaka, Toshiro Tomida, Kaori Kawano
  • Patent number: 10378090
    Abstract: A steel material comprising, by mass%, C: greater than 0.05% to 0.2%, Mn: 1% to 3%, Si: greater than 0.5% to 1.8%, Al: 0.01% to 0.5%, N: 0.001% to 0.015%, Ti or a sum of V and Ti: greater than 0.1% to 0.25%, Ti: 0.001% or more, Cr: 0% to 0.25%, Mo: 0% to 0.35%, the balance: Fe and impurities, comprising a multi-phase structure having a ferrite main phase and a second phase containing one or more of bainite, martensite and austenite, wherein an average nanohardness of the second phase is less than 6.0 GPa, an average grain diameter of all crystal grains in the main phase and the second phase is 3 ?m or less, and a proportion of a length of small-angle grain boundaries where the misorientation is 2° to less than 15° in a length of all grain boundaries is 15% or more.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: August 13, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Yasuaki Tanaka, Toshiro Tomida
  • Patent number: 10174392
    Abstract: A method for producing a high-tensile cold-rolled steel sheet includes subjecting a slab having a composition containing C: more than 0.020% and less than 0.30%, Si: more than 0.10% and 3.00% or less, and Mn: more than 1.00% and 3.50% or less to hot rolling wherein the roll draft of the final one pass is higher than 15%, and rolling is finished in the temperature region of Ar3 point or higher, optionally annealing wherein the hot-rolled steel sheet is heated to 300° C. or higher after being cooled to 780° C. or lower, coiling higher than 400° C. or lower than 400° C., cold rolling the hot-rolled steel sheet or the annealed steel sheet, and annealing wherein the cold-rolled steel sheet is soaked in the temperature region of (Ac3 point?40° C.) or higher, cooling to 500° C. or lower and 300° C. or higher, and holding in that temperature region for 30 seconds or longer.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: January 8, 2019
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Jun Haga, Takuya Nishio, Masayuki Wakita, Yasuaki Tanaka, Norio Imai, Toshiro Tomida, Mitsuru Yoshida, Kengo Hata
  • Patent number: 10106663
    Abstract: A foamable polypropylene resin composition includes 10 parts by mass to 65 parts by mass of rubber or a thermoplastic elastomer, 18 parts by mass to 90 parts by mass of talc having a 50% particle diameter (D50) of 1 ?m to 3 ?m and surface-treated for increased dispersibility, 0.1 part by mass to 6.0 parts by mass of an organic crystal nucleating agent, and 5 parts by mass to 15 parts by mass of a foaming agent relative to 100 parts by mass of the polypropylene resin.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: October 23, 2018
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Yasuaki Tanaka, Hitoshi Uchida
  • Patent number: 10041158
    Abstract: A multi-phase hot-rolled steel sheet having improved strength in an intermediate strain rate region has a chemical composition comprising, in mass percent, C: 0.07-0.2%, Si+Al: 0.3-1.5%, Mn: 1.0-3.0%, P: at most 0.02%, S: at most 0.005%, Cr: 0.1-0.5%, N: 0.001-0.008%, at least one of Ti: 0.002-0.05% and Nb: 0.002-0.05%, and a remainder of Fe and impurities. The area fraction of ferrite is 7-35%, the grain diameter of ferrite is in the range of 0.5-3.0 ?m, and the nanohardness of ferrite is in the range of 3.5-4.5 GPa. A second phase which is the remainder other than ferrite contains martensite and bainitic ferrite and/or bainite. The average nanohardness of the second phase is 5-12 GPa, and the second phase contains a high-hardness phase of 8-12 GPa with an area fraction of 5-35% based on the overall structure.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: August 7, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yasuaki Tanaka, Toshiro Tomida, Kaori Kawano
  • Publication number: 20180209007
    Abstract: There is provided a high strength hot rolled steel sheet including a predetermined chemical composition. A structure includes, by area ratio, 80% or more of polygonal ferrite, a total of 5% or less of martensite and austenite, and a total of 5% or less of pearlite and cementite, and a remainder is at least one selected from bainitic ferrite and bainite. When a standard deviation of micro-hardness of 50 arbitrary pieces of the polygonal ferrite present within a range of ±100 ?m from a central plane in a sheet thickness direction is ?HV, the ?HV is 30 or smaller. A grain of the polygonal ferrite contains 5×107 pieces/mm2 or more of Ti-containing carbide, and in 50% or more of the Ti-containing carbide, the aspect ratio which is a ratio of a length of a long side to a length of a short side is less than 3. The tensile strength is 540 MPa or higher.
    Type: Application
    Filed: July 31, 2015
    Publication date: July 26, 2018
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Natsuko SUGIURA, Yasuaki TANAKA, Takafumi YOKOYAMA
  • Patent number: 9994942
    Abstract: A steel material contains: by mass %, C: greater than 0.05% to 0.18%; Mn: 1% to 3%; Si: greater than 0.5% to 1.8%; Al: 0.01% to 0.5%; N: 0.001% to 0.015%; one or both of V and Ti: 0.01% to 0.3% in total; Cr: 0% to 0.25%; Mo: 0% to 0.35%; a balance: Fe and impurities; and 80% or more of bainite by area %, and 5% or more in total of one or two or more selected from a group consisting of ferrite, martensite and austenite by area %, in which an average block size of the above-described bainite is less than 2.0 ?m, an average grain diameter of all of the above-described ferrite, martensite and austenite is less than 1.0 ?m, an average nanohardness of the above-described bainite is 4.0 GPa to 5.0 GPa, and MX-type carbides each having a circle-equivalent diameter of 10 nm or more exist with an average grain spacing of 300 nm or less therebetween.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: June 12, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kaori Kawano, Yasuaki Tanaka, Masahito Tasaka, Yoshiaki Nakazawa, Toshiro Tomida
  • Patent number: 9970073
    Abstract: A multi-phase hot-rolled steel sheet has a metallurgical structure having a main phase of ferrite with an average grain diameter of at most 3.0 ?m and a second phase including at least one of martensite, bainite, and austenite. In the surface layer, the average grain diameter of the second phase is at most 2.0 ?m, the difference (?nHav) between the average nanohardness of the main phase (nH?av) and the average nanohardness of the second phase (nH2nd av) is 6.0-10.0 GPa, the difference (??nH) of the standard deviation of the nanohardness of the second phase from the standard deviation of the nanohardness of the main phase is at most 1.5 GPa, and in the central portion, the difference (?nHav) between the average nanohardnesses is at least 3.5 GPa to at most 6.0 GPa and the difference (??nH) between the standard deviations of the nanohardnesses is at least 1.5 GPa.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: May 15, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kaori Kawano, Yasuaki Tanaka, Toshiro Tomida
  • Publication number: 20180100213
    Abstract: A hot-rolled steel sheet according to the present embodiment has a chemical composition containing, in mass %: C: 0.07 to 0.30%, Si: more than 1.0 to 2.8%, Mn: 2.0 to 3.5%, P: 0.030% or less, S: 0.010% or less, Al: 0.01 to less than 1.0%, N: 0.01% or less, O: 0.01% or less, and one or more types selected from the group consisting of Sb, Sn and Te in a total amount of 0.03 to 0.30%, with a balance being Fe and impurities, and satisfying Formula (1). The micro-structure of the hot-rolled steel sheet includes ferrite and pearlite in a total amount of 50 area % or more. The tensile strength of the hot-rolled steel sheet is 900 MPa or less. Si+Mn?3.20??(1) Where, a content (mass %) of a corresponding element is substituted for each symbol of an element in Formula (1).
    Type: Application
    Filed: April 14, 2016
    Publication date: April 12, 2018
    Inventors: Yasuaki TANAKA, Mutsumi SAKAKIBARA, Takafumi YOKOYAMA, Hiroyuki KAWATA, Natsuko SUGIURA, Yasumitsu KONDO
  • Publication number: 20180037707
    Abstract: A foamable polypropylene resin composition includes 10 parts by mass to 65 parts by mass of rubber or a thermoplastic elastomer, 18 parts by mass to 90 parts by mass of talc having a 50% particle diameter (D50) of 1 ?m to 3 ?m and surface-treated for increased dispersibility, 0.1 part by mass to 6.0 parts by mass of an organic crystal nucleating agent, and 5 parts by mass to 15 parts by mass of a foaming agent relative to 100 parts by mass of the polypropylene resin composition.
    Type: Application
    Filed: June 28, 2017
    Publication date: February 8, 2018
    Inventors: Yasuaki TANAKA, Hitoshi UCHIDA
  • Patent number: 9862428
    Abstract: The steel material for an impact absorbing member has a composition containing: by mass %, C: 0.05 to 0.18%, Mn: 1 to 3%, Si+Al: at least 0.5% and less than 2.5%, and N: 0.001 to 0.015%, and in some cases, Cr: at most 0.5%, Mo: at most 0.2%, Ti: at most 0.05%, Nb: at most 0.05%, V: at most 0.2%, and B: at most 0.002%, the remainder being Fe and impurities. The steel material structure contains at least 70% by area of bainite made up of a lath structure having an average interval of at most 1 mm and martensite, 5 to 30%, and satisfies Formulas (1) and (2): (1) 1.2 £ HM0/HB0 £ 1.6, (2) 0.90 £ {(HM10/HM0)/(HB10/HB0) £ 1.3, where HM0 and HM10 represent average nano hardness in an initial state and after 10% tensile deformation of the martensite, and HB0 and HB0 represent that of bainite, respectively.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: January 9, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Yasuaki Tanaka, Toshiro Tomida
  • Patent number: 9809874
    Abstract: A steel sheet suitable as a starting material for a vehicle impact absorbing member with high absorption of impact energy and resistance to cracking contains, by mass %, C: 0.08-0.30%, Mn: 1.5-3.5%; Si+Al: 0.50-3.0%, P: 0.10% or less, S: at most 0.010%, and N: at most 0.010%, and optionally, one or more types selected from Cr: at most 0.5%, Mo: at most 0.5% , B: at most 0.010%, Ti: less than 0.04%, Nb: less than 0.030%, V: less than 0.5%, Ca: at most 0.010%, Mg: at most 0.010%, REM: at most 0.050%, and Bi: at most 0.050%. The microstructure contains, by area %, bainite: more than 50%, martensite: 3-30%, and retained austenite: 3-15%, the remainder comprising ferrite having an average grain diameter of less than 5 mm. The product of uniform elongation and hole expansion ratio is at least 300%2 and 5% effective flow stress is at least 900 MPa.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: November 7, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yasuaki Tanaka, Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Takuya Nishio, Masayuki Wakita, Jun Haga, Toshiro Tomida
  • Patent number: 9684240
    Abstract: To provide a negative-working photosensitive siloxane composition developable inorganically, and also to provide a cured film-manufacturing method employing that. The present invention provides a negative-working photosensitive siloxane composition comprising a polysiloxane, a silicon-containing compound having an ureido bond, a polymerization initiator, and a solvent. This composition is coat on a substrate, exposed to light, and developed, so that a cured film can be obtained without carrying out post-exposure baking.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: June 20, 2017
    Assignee: AZ Electronic Materials (Luxembourg) S.à.r.l.
    Inventors: Daishi Yokoyama, Atsuko Noya, Yuji Tashiro, Naofumi Yoshida, Yasuaki Tanaka, Takashi Fuke, Megumi Takahashi, Katsuto Taniguchi, Toshiaki Nonaka