Patents by Inventor Yasuhiro Shindo

Yasuhiro Shindo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230361370
    Abstract: This invention has an objective to increase the collected amounts of lithium contained in a lithium-ion battery. A recycling method for a lithium-ion battery comprising: a first discharging step, which increases an amount of lithium included in a cathode active material by discharging the lithium-ion battery via a load with a first resistance value; a second discharging step, which further increases the amount of lithium included in the cathode active material by discharging the lithium-ion battery via a load with a second resistance value lower than the first resistance value; and a collecting step, which collects the cathode active material from the lithium-ion battery after the second discharging step.
    Type: Application
    Filed: September 10, 2021
    Publication date: November 9, 2023
    Inventors: Hideaki HORIE, Yasuhiro SHINDO, Yusuke NAKASHIMA, Ryosuke KUSANO, Kaho SUZUKI
  • Publication number: 20230318094
    Abstract: A battery cell (1) has an electrode composition, a frame member (3) placed annularly so as to surround the electrode composition, and a positive electrode current collector and a negative electrode current collector for closing openings of the frame member (3) from both sides in the thickness direction. The frame member (3) has a fragile portion (9) for communicating inside and outside of the frame member (3) when the pressure inside the frame member increases above a certain level. The battery cell (1) in question allows increase in the pressure inside the frame member (3), thereby preventing damage.
    Type: Application
    Filed: August 6, 2021
    Publication date: October 5, 2023
    Inventors: Hideaki Horie, Yohji Kawasaki, Yasuhiro Shindo, Yusuke Nakashima, Kaho Suzuki, Yuya Tanaka, Yuki Nekohashi, Ryosuke Kusano
  • Patent number: 11637334
    Abstract: A cell system includes: a stacked-type cell module (100) having a plurality of lithium ion unit cells (1) being stacked and having through holes (3a, 3b) formed therein; a gas supply part (31); a cooling liquid supply part (32); a temperature sensor (35); and a control part (36) that controls switching between a normal control mode and a high-temperature control mode based on a signal from the temperature sensor (35). In the normal control mode, the control part (36) controls the gas supply part (31) to supply a gas to the through holes (3a, 3b), and at the same time, controls the cooling liquid supply part (32) to stop supply of a cooling liquid, and in the high-temperature control mode, the control part (36) controls the cooling liquid supply part (32) to supply the cooling liquid to the through holes (3a, 3b) to which the gas is supplied, and at the same time, controls the gas supply part (31) to stop supply of the gas.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: April 25, 2023
    Assignee: APB CORPORATION
    Inventors: Hideaki Horie, Yasuhiro Shindo, Yusuke Mizuno, Ryosuke Kusano, Yuki Nekohashi, Yusuke Nakashima, Kotaro Nasu, Naoya Omae
  • Patent number: 11322732
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: May 3, 2022
    Assignees: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke Mizuno, Yasuhiro Shindo, Yasuhiro Tsudo, Kenichi Kawakita, Yuki Kusachi, Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Patent number: 11233229
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: January 25, 2022
    Assignees: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke Mizuno, Yasuhiro Shindo, Yasuhiro Tsudo, Kenichi Kawakita, Yuki Kusachi, Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Publication number: 20210313632
    Abstract: A cell system includes: a stacked-type cell module (100) having a plurality of lithium ion unit cells (1) being stacked and having through holes (3a, 3b) formed therein; a gas supply part (31); a cooling liquid supply part (32); a temperature sensor (35); and a control part (36) that controls switching between a normal control mode and a high-temperature control mode based on a signal from the temperature sensor (35). In the normal control mode, the control part (36) controls the gas supply part (31) to supply a gas to the through holes (3a, 3b), and at the same time, controls the cooling liquid supply part (32) to stop supply of a cooling liquid, and in the high-temperature control mode, the control part (36) controls the cooling liquid supply part (32) to supply the cooling liquid to the through holes (3a, 3b) to which the gas is supplied, and at the same time, controls the gas supply part (31) to stop supply of the gas.
    Type: Application
    Filed: December 14, 2020
    Publication date: October 7, 2021
    Inventors: Hideaki HORIE, Yasuhiro SHINDO, Yusuke MIZUNO, Ryosuke KUSANO, Yuki NEKOHASHI, Yusuke NAKASHIMA, Kotaro NASU, Naoya OMAE
  • Patent number: 11063295
    Abstract: To provide a structure which allows production of an electrode, even if the film thickness of an electrode is increased; and a non-aqueous electrolyte secondary battery using the same.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: July 13, 2021
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko Ohsawa, Yuki Kusachi, Hiroshi Akama, Hideaki Horie, Yusuke Mizuno, Kenichi Kawakita, Yasuhiro Shindo, Yasuhiro Tsudo
  • Patent number: 10964934
    Abstract: A laminate type battery includes a power generating element and an outer casing body. The power generating element is formed by electrically laminating in series a plurality of single battery layers in which a single battery layer is formed by sequentially laminating a positive electrode current collector, a positive electrode active material layer, an electrolyte layer, a negative electrode active material layer, and a negative electrode current collector. The power generating element is disposed inside the outer casing body. At least one of the positive electrode current collector or the negative electrode current collector includes a resin layer having conductivity. The single battery layer including the resin layer is electrically connected to an adjacent single battery layer via at least one resistance reduction layer.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: March 30, 2021
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie, Yusuke Mizuno, Hiroshi Fukumoto, Masatoshi Okura, Yasuhiro Shindo, Yasuhiro Tsudo
  • Patent number: 10957908
    Abstract: The objective of the present invention is to provide an electrode for a lithium ion battery which has excellent electron conductivity even when the thickness of the electrode is increased. The electrode for a lithium ion battery according to the present invention includes a first principal surface located on a separator side of the lithium ion battery, and a second principal surface located on a current collector side, wherein the electrode has a thickness of 50 to 5000 ?m, and the electrode includes, between the first principal surface and the second principal surface, short fibers (A) having an average fiber length of 50 nm or more and less than 100 ?m, long fibers (B) having an average fiber length of 100 ?m or more and 1000 ?m or less, and active material particles (C), and the short fibers (A) and the long fibers (B) are electroconductive fibers.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: March 23, 2021
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yusuke Mizuno, Yasuhiro Shindo, Yusuke Nakashima, Kenichi Kawakita, Yuki Kusachi, Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Patent number: 10916779
    Abstract: An object of the present invention is to provide a dispersant for a resin current collector which can uniformly disperse a conductive filler to attain sufficient charge and discharge characteristics without impairing the output power per unit weight of a battery. The present invention provides a dispersant for a resin current collector comprising a polymer having a resin-philic block (A1) and a conductive filler-philic block (A2).
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: February 9, 2021
    Assignees: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Hiroshi Fukumoto, Yasuhiro Shindo, Manabu Watanabe, Hiroshi Akama, Hideaki Horie
  • Publication number: 20200358077
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Application
    Filed: June 12, 2020
    Publication date: November 12, 2020
    Applicants: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke MIZUNO, Yasuhiro SHINDO, Yasuhiro TSUDO, Kenichi KAWAKITA, Yuki KUSACHI, Yasuhiko OHSAWA, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Publication number: 20200358078
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Application
    Filed: June 12, 2020
    Publication date: November 12, 2020
    Applicants: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke MIZUNO, Yasuhiro SHINDO, Yasuhiro TSUDO, Kenichi KAWAKITA, Yuki KUSACHI, Yasuhiko OHSAWA, Hajime SATOU, Hiroshi AKAMA, Hideaki HORIE
  • Patent number: 10727476
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: July 28, 2020
    Assignees: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke Mizuno, Yasuhiro Shindo, Yasuhiro Tsudo, Kenichi Kawakita, Yuki Kusachi, Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Patent number: 10658674
    Abstract: An electrode for improving the durability of a battery includes a current collector and an active material layer. The current collector has a conductive resin layer including a polymer material and a conductive filler. The electrode further includes a conductive member, which is in electrical contact with the conductive filler, between the current collector and the active material layer.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: May 19, 2020
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie, Yusuke Mizuno, Hiroshi Fukumoto, Masatoshi Okura, Yasuhiro Shindo, Yasuhiro Tsudo
  • Patent number: 10511004
    Abstract: A non-aqueous electrolyte secondary battery has a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and an electrolyte layer having an electrolyte solution containing a non-aqueous solvent. At least one of the positive electrode active material layer and the negative electrode active material layer contains an electrode material for a non-aqueous electrolyte secondary battery having a core part including an electrode active material and a shell part including a conductive material in a base material formed by a gel-forming polymer having a liquid absorption rate with respect to the electrolyte solution of 10 to 200%.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: December 17, 2019
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yuki Kusachi, Yasuhiko Ohsawa, Hiroshi Akama, Hideaki Horie, Yuta Murakami, Kenichi Kawakita, Yusuke Mizuno, Yasuhiro Tsudo, Yasuhiro Shindo
  • Publication number: 20190348712
    Abstract: To provide a structure which allows production of an electrode, even if the film thickness of an electrode is increased; and a non-aqueous electrolyte secondary battery using the same.
    Type: Application
    Filed: July 25, 2019
    Publication date: November 14, 2019
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko OHSAWA, Yuki KUSACHI, Hiroshi AKAMA, Hideaki HORIE, Yusuke MIZUNO, Kenichi KAWAKITA, Yasuhiro Shindo, Yasuhiro TSUDO
  • Patent number: 10431851
    Abstract: To provide a structure which allows production of an electrode, even if the film thickness of an electrode is increased; and a non-aqueous electrolyte secondary battery using the same.
    Type: Grant
    Filed: December 25, 2015
    Date of Patent: October 1, 2019
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yasuhiko Ohsawa, Yuki Kusachi, Hiroshi Akama, Hideaki Horie, Yusuke Mizuno, Kenichi Kawakita, Yasuhiro Shindo, Yasuhiro Tsudo
  • Publication number: 20190201455
    Abstract: An object of the present invention is to provide a safe and easy-to-prep cell product for prevention and/or treatment of organ fibrosis such as liver fibrosis. Provided is a cell product for prevention and/or treatment of organ fibrosis such as liver fibrosis, the cell product comprising a SSEA-3-positive pluripotent stem cell (Muse cell) derived from mesenchymal tissue in a living body or a cultured mesenchymal cell.
    Type: Application
    Filed: June 30, 2017
    Publication date: July 4, 2019
    Applicants: TOHOKU UNIVERSITY, LIFE SCIENCE INSTITUTE, INC.
    Inventors: Mari DEZAWA, Michiaki UNNO, Toshihiro YAMAMOTO, Yasuhiro SHINDO, Hiroto HARA, Naoya MASUTOMI
  • Patent number: 10312524
    Abstract: The present invention provides a means for improving the output performance of a battery. An electrical connection structure of the present invention includes a current collector which includes a conductive resin layer containing a polymer material and a conductive filler and a conductive member which is in electrical contact with the conductive filler.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: June 4, 2019
    Assignees: NISSAN MOTOR CO., LTD., SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie, Yusuke Mizuno, Hiroshi Fukumoto, Masatoshi Okura, Yasuhiro Shindo, Yasuhiro Tsudo
  • Patent number: 10276858
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: April 30, 2019
    Assignees: SANYO CHEMICAL LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke Mizuno, Yasuhiro Shindo, Yasuhiro Tsudo, Kenichi Kawakita, Yuki Kusachi, Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie