Patents by Inventor Yasutoshi Hideshima

Yasutoshi Hideshima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10682697
    Abstract: A compound for metal powder injection molding includes secondary particles in which first metal particles are bound to one another, and a matrix region including a binder and second metal particles whose constituent material is different from that of the first metal particles. It is preferred that in the secondary particles, the first metal particles are bound to one another through the binder. It is also preferred that the average particle diameter of the second metal particles is smaller than that of the first metal particles.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: June 16, 2020
    Assignee: Seiko Epson Corporation
    Inventors: Hidefumi Nakamura, Yasutoshi Hideshima
  • Patent number: 10675682
    Abstract: A compound for metal powder injection molding includes secondary particles in which first metal particles are bound to one another, and a matrix region including a binder and second metal particles composed of the same constituent material as the first metal particles and having a smaller average particle diameter than the first metal particles. The constituent material of the first metal particles is any of an Fe-based alloy, an Ni-based alloy, and a Co-based alloy.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: June 9, 2020
    Assignee: Seiko Epson Corporation
    Inventors: Hidefumi Nakamura, Yasutoshi Hideshima
  • Publication number: 20200122356
    Abstract: A device for manufacturing a three-dimensional shaped object includes a table on which a layer of granulated powder is stacked, a layer formation portion that forms the granulated powder on the table into a layer having a predetermined thickness, a compression unit configured to compress a first region in the layer, a processing unit that processes the formation region of the three-dimensional shaped object in the layer, and a control unit that controls the compression unit to form the first region in which the granulated powder are crushed, and the second region in which the granulated powder are not crushed.
    Type: Application
    Filed: October 21, 2019
    Publication date: April 23, 2020
    Inventors: Yasutoshi HIDESHIMA, Hidefumi NAKAMURA
  • Publication number: 20200122230
    Abstract: A device for manufacturing a three-dimensional shaped object includes a table on which a layer of granulated powder is stacked, a layer formation portion that forms the granulated powder on the table into a layer having a predetermined thickness, a compression unit configured to compress the layer to crush the granulated powder in a formation region of a three-dimensional shaped object in the layer, and a binder applying unit that forms a shape of the three-dimensional shaped object by applying the binder to only a region corresponding to the surface region of the three-dimensional shaped object, in the formation region in the layer.
    Type: Application
    Filed: October 21, 2019
    Publication date: April 23, 2020
    Inventor: Yasutoshi HIDESHIMA
  • Publication number: 20200114582
    Abstract: A plasticizing device includes a rotor having a rotation shaft and a groove-formed surface that includes a groove formed in the rotation direction and that inclined from the rotation shaft in a radial direction with respect to a radial direction orthogonal to the center axis, a facing unit having a facing surface inclined so as to face the groove-formed surface in the radial direction, a heater heating a material to be supplied between the facing surface and the rotor, and a communication hole through which the material plasticized by heat of the heater flows, a drive motor generating rotational driving force, a connection unit fitting to the rotor in a direction along a rotation shaft of the drive motor, connecting the rotation shaft of the drive motor and the rotor to each other, and transmitting the rotational driving force of the drive motor to the rotor, and an elastic member disposed between the rotor and the connection unit.
    Type: Application
    Filed: October 9, 2019
    Publication date: April 16, 2020
    Inventor: Yasutoshi HIDESHIMA
  • Publication number: 20200031037
    Abstract: The material plasticizing device includes a rotor having a material introduction portion open on an outer peripheral side surface, and a groove forming surface on which a scroll groove kneading a material introduced from the material introduction portion is formed; a case that surrounds an outer periphery of the groove forming surface; a facing portion having a facing surface that faces the groove forming surface, a heater that heats the material in the scroll groove, and a communication hole through which the material plasticized by a heat of the heater flows; and a material supply source that stores the material, in which a coupling pipeline is formed in the case, a material supply path is formed by the case and the outer peripheral side surface of the rotor, and the material flows into the material introduction portion through the coupling pipeline and the material supply path.
    Type: Application
    Filed: July 24, 2019
    Publication date: January 30, 2020
    Inventor: Yasutoshi HIDESHIMA
  • Publication number: 20190283131
    Abstract: A method for manufacturing a three-dimensional object includes a layer-forming step (Step S150) of forming layers using a flowable composition containing a constituent material powder and binder for forming a three-dimensional object; a degreasing step (Step S170) of removing the binder from a multilayer body, formed by stacking the layers, for the three-dimensional object; and a sintering step (Step S180) of sintering the constituent material powder by heating the multilayer body free from the binder. In the layer-forming step, channels leading to a surface of the multilayer body are formed such that gas, derived from the binder, generated in the degreasing step can flow through the channels.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 19, 2019
    Inventors: Yasutoshi HIDESHIMA, Naoko SHIMA
  • Publication number: 20190060995
    Abstract: A raw material for thixomolding includes a magnesium-based alloy powder which contains calcium in an amount of 0.2 mass % or more and 5 mass % or less and aluminum in an amount of 2.5 mass % or more and 12 mass % or less, wherein the magnesium-based alloy powder includes an oxide layer which has an average thickness of 30 nm or more and 100 nm or less and contains at least one of calcium and aluminum as an outermost layer. The average dendrite secondary arm spacing of crystal structures of the magnesium-based alloy powder is preferably 5 ?m or less.
    Type: Application
    Filed: August 30, 2018
    Publication date: February 28, 2019
    Inventors: Yasutoshi HIDESHIMA, Hidefumi NAKAMURA, Hiroyoshi OTAKA
  • Publication number: 20180250738
    Abstract: A compound for metal powder injection molding includes secondary particles in which first metal particles are bound to one another, and a matrix region including a binder and second metal particles whose constituent material is different from that of the first metal particles. It is preferred that in the secondary particles, the first metal particles are bound to one another through the binder. It is also preferred that the average particle diameter of the second metal particles is smaller than that of the first metal particles.
    Type: Application
    Filed: February 20, 2018
    Publication date: September 6, 2018
    Inventors: Hidefumi NAKAMURA, Yasutoshi HIDESHIMA
  • Publication number: 20180243824
    Abstract: A compound for metal powder injection molding includes secondary particles in which first metal particles are bound to one another, and a matrix region including a binder and second metal particles composed of the same constituent material as the first metal particles and having a smaller average particle diameter than the first metal particles. The constituent material of the first metal particles is any of an Fe-based alloy, an Ni-based alloy, and a Co-based alloy.
    Type: Application
    Filed: February 22, 2018
    Publication date: August 30, 2018
    Inventors: Hidefumi NAKAMURA, Yasutoshi HIDESHIMA
  • Patent number: 10017834
    Abstract: A stainless steel material having compositions which contain on the basis of percent by mass, C from 0.04 to 0.12%, Ni from 0 (including a case of no addition) to 5.0%, Cr from 12.0 to 17.0%, N from 0.0 to 0.10%, Si from 0.2 to 2.0%, Mn at 2.0% or less, Cu from 0.0 to 2.0%, P at 0.06% or less, S at 0.006% or less, with residue being Fe and unavoidable impurities. Further, a parent phase has any one of a single phase structure of ferrite phase or martensite phase and a diploid phase structure of ferrite phase and martensite phase. An end of the base material is melt-welded as a joint to form a pipe. The parent phase is provided with carbide uniformly separated at grain boundaries and within grains, with a dissolved amount of C being 0.03% by mass or less.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: July 10, 2018
    Assignee: NISSHIN STEEL CO., LTD.
    Inventors: Seiichi Isozaki, Yasutoshi Hideshima, Hiroshi Fujimoto, Satoshi Suzuki
  • Patent number: 9803257
    Abstract: A stainless steel material having compositions which contain on the basis of percent by mass, C from 0.04 to 0.12%, Ni from 0 (including a case of no addition) to 5.0%, Cr from 12.0 to 17.0%, N from 0.0 to 0.10%, Si from 0.2 to 2.0%, Mn at 2.0% or less, Cu from 0.0 to 2.0%, P at 0.06% or less, S at 0.006% or less, with residue being Fe and unavoidable impurities. Further, a parent phase has any one of a single phase structure of ferrite phase or martensite phase and a diploid phase structure of ferrite phase and martensite phase. An end of the base material is melt-welded as a joint to form a pipe. The parent phase is provided with carbide uniformly separated at grain boundaries and within grains, with a dissolved amount of C being 0.03% by mass or less.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: October 31, 2017
    Assignee: NISSHIN STEEL CO., LTD.
    Inventors: Seiichi Isozaki, Yasutoshi Hideshima, Hiroshi Fujimoto, Satoshi Suzuki
  • Publication number: 20160355901
    Abstract: A stainless steel material having compositions which contain on the basis of percent by mass, C from 0.04 to 0.12%, Ni from 0 (including a case of no addition) to 5.0%, Cr from 12.0 to 17.0%, N from 0.0 to 0.10%, Si from 0.2 to 2.0%, Mn at 2.0% or less, Cu from 0.0 to 2.0%, P at 0.06% or less, S at 0.006% or less, with residue being Fe and unavoidable impurities. Further, a parent phase has any one of a single phase structure of ferrite phase or martensite phase and a diploid phase structure of ferrite phase and martensite phase. An end of the base material is melt-welded as a joint to form a pipe. The parent phase is provided with carbide uniformly separated at grain boundaries and within grains, with a dissolved amount of C being 0.03% by mass or less.
    Type: Application
    Filed: August 19, 2016
    Publication date: December 8, 2016
    Inventors: Seiichi ISOZAKI, Yasutoshi HIDESHIMA, Hiroshi FUJIMOTO, Satoshi SUZUKI
  • Publication number: 20120024430
    Abstract: A stainless steel material having compositions which contain on the basis of percent by mass, C from 0.04 to 0.12%, Ni from 0 (including a case of no addition) to 5.0%, Cr from 12.0 to 17.0%, N from 0.0 to 0.10%, Si from 0.2 to 2.0%, Mn at 2.0% or less, Cu from 0.0 to 2.0%, P at 0.06% or less, S at 0.006% or less, with residue being Fe and unavoidable impurities. Further, a parent phase has any one of a single phase structure of ferrite phase or martensite phase and a diploid phase structure of ferrite phase and martensite phase. An end of the base material is melt-welded. as a joint to form a pipe. The parent phase is provided with carbide uniformly separated at grain boundaries and within grains, with a dissolved amount of C being 0.03% by mass or less.
    Type: Application
    Filed: May 7, 2009
    Publication date: February 2, 2012
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Seiichi Isozaki, Yasutoshi Hideshima, Hiroshi Fujimoto, Satoshi Suzuki
  • Publication number: 20090165905
    Abstract: A ferritic stainless steel sheet has a composition of C up to 0.02 mass %, Si up to 0.8 mass %, Mn up to 1.5 mass %, P up to 0.050 mass %, S up to 0.01 mass %, 8.0-35.0 mass % of Cr, N up to 0.05 mass %, 0.05-0.40 mass % of Ti and 0.10-0.50 mass % of Nb with a product of (% Ti % N) less than 0.005. Precipitates of 0.15 ?m or more in particle size except TiN are distributed in a steel matrix at a rate of 5000-50000/mm2. The steel sheet is manufactured by hot-rolling a slab at a finish-temperature of 800° C. or lower, annealing the hot-rolled steel sheet at 450-1080° C., cold-rolling the hot-rolled steel sheet in accompaniment with intermediate-annealing at a temperature within a range of from (a recrystallization-finishing temperature ?100° C.) to (a recrystallization-finishing temperature) and then finish-annealing the cold-rolled steel sheet at 1080° C. or lower.
    Type: Application
    Filed: March 3, 2009
    Publication date: July 2, 2009
    Applicant: Nisshin Steel Co., Ltd.
    Inventors: Yasutoshi Hideshima, Kouki Tomimura, Naoto Hiramatsu
  • Publication number: 20090041613
    Abstract: Provided is an Ni-reduced austenite stainless steel having excellent recyclability with no problem of producibility depression to be caused by the surface property thereof and having good workability, season cracking resistance, corrosion resistance and stress corrosion cracking resistance in point of the material characteristics thereof. The steel comprises C in an amount of more than 0.05% (by mass) and within a range of from 0.15 to 0.3% as (C+N), Si in an amount of at most 1%, Mn in an amount of from 0.5 to 2.5%, Ni in an amount of from 3 to 6%, Cr in an amount of from more than 16 to 25% and Cu in an amount of from 0.8 to 4%, and has Md30 of the following formula (1) of from ?50 to 10 and SFE of the following formula (2) of at least 5: Md30=551?462(C+N)?9.2Si?8.1Mn?29(Ni+Cu)?13.7Cr ??(1), SFE=2.2Ni+6Cu?1.1Cr?13Si?1.2Mn+32 ??(2).
    Type: Application
    Filed: August 5, 2008
    Publication date: February 12, 2009
    Inventors: Satoshi Suzuki, Yasutoshi Hideshima, Teruhiko Suetugu, Tomohisa Watanabe
  • Publication number: 20040244884
    Abstract: A ferritic stainless steel sheet has a composition of C up to 0.02 mass %, Si up to 0.8 mass %, Mn up to 1.5 mass %, P up to 0.050 mass %, S up to 0.01 mass %, 8.0-35.0 mass % of Cr, N up to 0.05 mass %, 0.05-0.40 mass % of Ti and 0.10-0.50 mass % of Nb with a product of (% Ti×% N) less than 0.005. Precipitates of 0.15 &mgr;m or more in particle size except TiN are distributed in a steel matrix at a rate of 5000-50000/mm2. The steel sheet is manufactured by hot-rolling a slab at a finish-temperature of 800° C. or lower, annealing the hot-rolled steel sheet at 450-1080° C., cold-rolling the hot-rolled steel sheet in accompaniment with intermediate-annealing at a temperature within a range of from (a recrystallization-finishing temperature −100° C.) to (a recrystallization-finishing temperature) and then finish-annealing the cold-rolled steel sheet at 1080° C. or lower.
    Type: Application
    Filed: June 3, 2004
    Publication date: December 9, 2004
    Applicant: NISSHIN STEELCO., LTD
    Inventors: Yasutoshi Hideshima, Kouki Tomimura, Naoto Hiramatsu
  • Patent number: 6802430
    Abstract: A fuel tank and a fuel-filler tube, which maintain excellent corrosion-resistance over a long term even in a severely corrosive atmosphere, is made of a ferritic stainless steel sheet good of formability. The steel sheet, which has elongation of 30% or more after fracture by a uniaxial tensile test and minimum Lankford value (value-rmin) of 1.3 or more, is formed to a product shape, and paint is cathodically electrodeposited on a surface of the formed stainless steel sheet. The stainless steel sheet may be one coated with an Al or Zn plating layer. When the fuel tank or fuel-filler tube is fabricated by welding, Zn-rich paint is preferably applied to a welded part in prior to cathodic electrodeposition coating.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: October 12, 2004
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Kouki Tomimura, Yasutoshi Hideshima, Naoto Hiramatsu, Toshiro Adachi, Kazushi Shirayama
  • Publication number: 20030183626
    Abstract: A fuel tank and a fuel-filler tube, which maintain excellent corrosion-resistance over a long term even in a severely corrosive atmosphere, is made of a ferritic stainless steel sheet good of formability. The steel sheet, which has elongation of 30% or more after fracture by a uniaxial tensile test and minimum Lankford value (value-rmin) of 1.3 or more, is formed to a product shape, and paint is cathodically electrodeposited on a surface of the formed stainless steel sheet. The stainless steel sheet may be one coated with an Al or Zn plating layer. When the fuel tank or fuel-filler tube is fabricated by welding, Zn-rich paint is preferably applied to a welded part in prior to cathodic electrodeposition coating.
    Type: Application
    Filed: March 26, 2003
    Publication date: October 2, 2003
    Applicant: Nisshin Steel Co., Ltd.
    Inventors: Kouki Tomimura, Yasutoshi Hideshima, Naoto Hiramatsu, Toshiro Adachi, Kazushi Shirayama