Patents by Inventor Yi-An Sha

Yi-An Sha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8687337
    Abstract: An over-current protection device includes a first substrate, a second substrate, a first grating electrode, a second grating electrode and a positive temperature coefficient (PTC) material layer. The first grating electrode and the second grating electrode are formed on the first substrate and are interlaced and spaced on a same plane. The PTC material layer is formed on the first substrate, the first grating electrode and the second grating electrode, and between the first grating electrode and the second grating electrode. In an embodiment, the first grating electrode and the second grating electrode serve as a current input port and a current output port, respectively.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: April 1, 2014
    Assignee: Polytronics Technology Corp.
    Inventors: Yi An Sha, David Shau Chew Wang
  • Publication number: 20140085640
    Abstract: A measurement system is provided to measure a hole of a target, including a light source generation unit, a capturing unit and a processing unit. The light source generation unit generates a light source and focuses the light source on a plurality of different height planes. The capturing unit captures a plurality of images scattered from the plurality of different height planes. The processing unit obtains boundaries of the hole on the plurality of different height planes according to the plurality of images, samples image intensities of different azimuth angles on the boundaries of the hole on each of the plurality of different height planes to generate a plurality of sampling values, and develops a sidewall image of the hole according to the plurality of sampling values, the plurality of different height planes and the different azimuth angles.
    Type: Application
    Filed: January 28, 2013
    Publication date: March 27, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Deh-Ming Shyu, Yi-Sha Ku
  • Publication number: 20140063671
    Abstract: A surface-mountable over-current protection device comprises a PTC material layer, first and second conductive layers, first and second electrodes, first and second electrically conductive connecting members. The PTC material layer has a resistivity less than 0.18 ?-cm. The conductive layers are in contact with opposite surfaces of the PTC material layer. The first electrode comprises a pair of first metal foils and is insulated from the second conductive layer. The second electrode comprises a pair of second metal foils and is insulated from the first conductive layer. The first electrically conductive connecting member connects to the first metal foils and conductive layer. The second electrically conductive connecting member connects to the second metal foils and conductive layer. The first electrically conductive connecting member comprises 40%-100% by area of the first lateral surface, and the second electrically conductive connecting member comprises 40%-100% by area of the second lateral surface.
    Type: Application
    Filed: May 23, 2013
    Publication date: March 6, 2014
    Applicant: POLYTRONICS TECHNOLOGY CORP.
    Inventors: Fu Hua CHU, David Shau Chew Wang, Chun Teng Tseng, Yi An Sha
  • Patent number: 8652641
    Abstract: A heat conductive dielectric polymer material comprises a polymer, a curing agent and a heat conductive filler. The polymer comprises a thermoplastic and a thermosetting epoxy resin. The thermoplastic comprises 3% to 30% by volume of the heat conductive dielectric polymer material, and the thermosetting epoxy is selected from end-epoxy-function group epoxy resin, side chain epoxy function group epoxy resin, multi-function group epoxy resin or the mixture thereof. The curing agent can cure the thermosetting epoxy resin at a temperature. The heat conductive filler is uniformly distributed in the polymer and comprises 40% to 70% by volume of the heat conductive dielectric polymer material. The heat conductive dielectric polymer material has an interpenetrating network structure, and the heat conductive coefficient is greater than 1.0 W/m-K.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: February 18, 2014
    Assignee: Polytronics Technology Corp.
    Inventors: David Shau Chew Wang, Yi An Sha, Kuo Hsun Chen
  • Publication number: 20140035719
    Abstract: An over-current protection device has a PTC device, first and second electrodes and an insulation layer. The PTC device comprises first and second electrically conductive members and a PTC layer laminated between the first and second electrically conductive members. The first and second electrodes are electrically connected to the first and second electrically conductive members, respectively. The insulation layer is disposed on a surface of the first electrically conductive member. The device is a stack structure extending along a first direction, and comprises at least one hole extending along a second direction substantially perpendicular to the first direction. The value of the covered area of the hole divided by the area of the form factor of the over-current protection device is not less than 2%, and the value of the thickness of the device divided by the number of the PIC devices is less than 0.7 mm.
    Type: Application
    Filed: April 19, 2013
    Publication date: February 6, 2014
    Applicant: POLYTRONICS TECHNOLOGY CORP.
    Inventors: Wen Feng LEE, Kuo Hsun Chen, Chun Teng Tseng, Yi An Sha, Ming Hsun Lu
  • Patent number: 8537213
    Abstract: A method for measuring a via bottom profile is disclosed for obtaining a profile of a bottom of a via in a front side of a substrate. In this method, an infrared (IR) light source is transmitted from the back of the substrate to the bottom of the via through an objective by using an IR-microscope, and lights scattered from the bottom of the via are acquired by an image capturing device to generate an image, where the image displays a diameter (2Ea) of the via bottom profile and a diameter (2Ec) of a maximum receivable base area of the via for the IR-microscope. Thereafter, by using an elliptic equation, a minor axis radius thereof (Eb) is obtained, and thus the via bottom profile is obtained from a radius (Ea) of the via bottom profile and the minor axis radius (Eb) of the elliptic equation.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: September 17, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Deh-Ming Shyu, Yi-Sha Ku, Wei-Te Hsu
  • Patent number: 8536973
    Abstract: An over-current protection device includes two metal foils and a PTC material layer. The PTC material layer is laminated between the two metal foils and has a resistivity less than 0.4 ?-cm. The PTC material layer includes crystalline polymer and electrically conductive ceramic filler dispersed in the crystalline polymer. The conductive ceramic filler is of HCP structure and includes 70-95% by weight of the PTC material layer. The trip jump value of the over-current protection device after 300 times trip is less than or equal to 25. The resistance repeatability of the device can be effectively improved by adding the conductive ceramic filler.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: September 17, 2013
    Assignee: Polytronics Technology Corp.
    Inventors: Kuo Chang Lo, Yao Te Chang, Ya Fang Liang, Yi An Sha, David Shau Chew Wang
  • Patent number: 8525636
    Abstract: A thermistor includes a first electrically conductive member, a second electrically conductive member and a polymer material layer laminated therebetween. The polymer material layer exhibits positive temperature coefficient (PTC) behavior, and includes at least one crystalline polymer and at least one electrically conductive filler distributed in the crystalline polymer. The conductive filler has a resistivity less than 500 ??-cm and includes 72-96% by weight of the polymer material layer. The thermistor has a device effective area, and the value of the hold current at 60° C. divided by the device effective area is around 0.16-0.8 A/mm2. The ratio of the hold current of the thermistor at 60° C. to the hold current at 25° C. of the thermistor is 40-95%.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: September 3, 2013
    Assignee: Polytronics Technology Corp.
    Inventors: Yi An Sha, Kuo Chang Lo, Tsungmin Su
  • Publication number: 20130200987
    Abstract: A thermistor includes a resistive device, a first insulation layer, a first electrode, a second electrode and a first heat-conductive layer. The resistive device includes a first electrically conductive member, a second electrically conductive member and a polymeric material layer laminated therebetween. The polymeric material layer exhibits positive temperature coefficient (PTC) or negative temperature coefficient (NTC) behavior. The first insulation layer is disposed on the first electrically conductive member. The first electrode is electrically coupled to the first electrically conductive member, whereas the second electrode is electrically coupled to the second electrically conductive member and is insulated from the first electrode. The first heat-conductive layer is disposed on the first insulation layer, and has a heat conductivity of at least 30 W/m-K and a thickness of 15-250 ?m.
    Type: Application
    Filed: February 3, 2012
    Publication date: August 8, 2013
    Applicant: POLYTRONICS TECHNOLOGY CORP.
    Inventors: Yi An SHA, Chun Teng TSENG, David Shau Chew WANG
  • Publication number: 20130200988
    Abstract: An over-current protection device includes two metal foils and a PTC material layer. The PTC material layer is laminated between the two metal foils and has a resistivity less than 0.4 ?-cm. The PTC material layer includes crystalline polymer and electrically conductive ceramic filler dispersed in the crystalline polymer. The conductive ceramic filler is of HCP structure and includes 70-95% by weight of the PTC material layer. The trip jump value of the over-current protection device after 300 times trip is less than or equal to 25. The resistance repeatability of the device can be effectively improved by adding the conductive ceramic filler.
    Type: Application
    Filed: June 25, 2012
    Publication date: August 8, 2013
    Applicant: POLYTRONICS TECHNOLOGY CORP.
    Inventors: KUO CHANG LO, YAO TE CHANG, YA FANG LIANG, YI AN SHA, DAVID SHAU CHEW WANG
  • Patent number: 8502638
    Abstract: A thermistor includes a resistive device, a first insulation layer, a first electrode, a second electrode and a first heat-conductive layer. The resistive device includes a first electrically conductive member, a second electrically conductive member and a polymeric material layer laminated therebetween. The polymeric material layer exhibits positive temperature coefficient (PTC) or negative temperature coefficient (NTC) behavior. The first insulation layer is disposed on the first electrically conductive member. The first electrode is electrically coupled to the first electrically conductive member, whereas the second electrode is electrically coupled to the second electrically conductive member and is insulated from the first electrode. The first heat-conductive layer is disposed on the first insulation layer, and has a heat conductivity of at least 30 W/m-K and a thickness of 15-250 ?m.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: August 6, 2013
    Assignee: Polytronics Technology Corp.
    Inventors: Yi An Sha, Chun Teng Tseng, David Shau Chew Wang
  • Publication number: 20130187748
    Abstract: A surface mountable thermistor comprises a resistive device, first and second electrodes, and at least one heat conductive dielectric layer. The resistive device contains first and second electrically conductive members and a polymeric material layer laminated therebetween. The polymeric material layer exhibits PTC or NTC behavior. The polymeric material layer and the first and second electrically conductive members commonly extend in a first direction. The first electrode is electrically coupled to the first electrically conductive member. The second electrode is electrically coupled to the second electrically conductive member and is insulated from the first electrode. The heat conductivity of the first electrode or the second electrode is at least 50 W/mK. The heat conductive dielectric layer comprises polymeric insulation matrix and heat conductive filler, and is disposed between the first electrode and the second electrode. The heat conductivity of heat conductive dielectric layer is between 1.
    Type: Application
    Filed: September 5, 2012
    Publication date: July 25, 2013
    Applicant: POLYTRONICS TECHNOLOGY CORP.
    Inventors: Yi An SHA, Chun Teng Tseng, David Shau Chew Wang
  • Patent number: 8446245
    Abstract: An over-current protection device includes two metal foils and a PTC material layer laminated therebetween. The PTC material layer has a volume resistivity between 0.07 ?-cm and 0.32 ?-cm. The PTC material layer includes a crystalline polymer, a conductive ceramic carbide filler of a particle size between 0.1 ?m and 50 ?m and a volume resistivity less than 0.1 ?-cm, and a carbon black filler. The weight ratio of the carbon black filler to the conductive ceramic carbide filler is between 1:90 and 1:4. The conductive ceramic carbide filler and the carbon black filler are dispersed in the crystalline polymer. The resistance ratio R100/Ri is between 3 and 20.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: May 21, 2013
    Assignee: Polytronics Technology Corp.
    Inventors: David Shau Chew Wang, Yi An Sha, Kuo Chang Lo, Tai Kuang Hei
  • Patent number: 8421584
    Abstract: An over-current protection device includes a conductive composite having a first crystalline fluorinated polymer, a plurality of particulates, a conductive filler, and a non-conductive filler, wherein the plurality of particulates include a second crystalline fluorinated polymer. The first crystalline fluorinated polymer has a crystalline melting temperature of between 150 and 190 degrees Celsius. The plurality of particulates including the second crystalline fluorinated polymer are disposed in the conductive composite, having a crystalline melting temperature of between 320 and 390 degrees Celsius and having a particulate diameter of from 1 to 50 micrometers. The conductive filler and the non-conductive filler are dispersed in the conductive composite.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: April 16, 2013
    Assignee: Polytronics Technology Corp.
    Inventors: Tong Cheng Tsai, Yi An Sha, David Shau Chew Wang, Fu Hua Chu
  • Publication number: 20130070380
    Abstract: An over-current protection device includes two metal foils and a PTC material layer laminated therebetween. The PTC material layer has a volume resistivity between 0.07 ?-cm and 0.32 ?-cm. The PTC material layer includes a crystalline polymer, a conductive ceramic carbide filler of a particle size between 0.1 ?m and 50 ?m and a volume resistivity less than 0.1 ?-cm, and a carbon black filler. The weight ratio of the carbon black filler to the conductive ceramic carbide filler is between 1:90 and 1:4. The conductive ceramic carbide filler and the carbon black filler are dispersed in the crystalline polymer. The resistance ratio R100/Ri is between 3 and 20.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 21, 2013
    Applicant: POLYTRONICS TECHNOLOGY CORP.
    Inventors: David Shau Chew WANG, Yi An Sha, Kuo Chang Lo, Tai Kuang Hei
  • Publication number: 20130070381
    Abstract: An over-current protection device includes a first substrate, a second substrate, a first grating electrode, a second grating electrode and a positive temperature coefficient (PTC) material layer. The first grating electrode and the second grating electrode are formed on the first substrate and are interlaced and spaced on a same plane. The PTC material layer is formed on the first substrate, the first grating electrode and the second grating electrode, and between the first grating electrode and the second grating electrode. In an embodiment, the first grating electrode and the second grating electrode serve as a current input port and a current output port, respectively.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Applicant: POLYTRONICS TECHNOLOGY CORP.
    Inventors: Yi An SHA, David Shau Chew Wang
  • Publication number: 20130062045
    Abstract: A heat-conductive dielectric polymer material includes a thermosetting epoxy resin, a nonwoven fiber component, a curing agent and a heat-conductive filler. The thermosetting epoxy resin is selected from the group consisting of end-epoxy-function group epoxy resin, side chain epoxy function group epoxy resin, multi-functional epoxy resin or the mixture thereof. The thermosetting epoxy resin comprises 4%-60% by volume of the heat-conductive dielectric polymer material. The curing agent is configured to cure the thermosetting epoxy resin at a curing temperature. The heat-conductive filler comprises 40%-70% by volume of the heat-conductive dielectric polymer material. The nonwoven fiber component comprises 1%-35% by volume of the heat-conductive dielectric polymer material. The heat-conductive dielectric polymer material has a thermal conductivity greater than 0.5 W/mK.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 14, 2013
    Applicant: POLYTRONICS TECHNOLOGY CORP.
    Inventors: FU HUA CHU, DAVID SHAU CHEW WANG, YI AN SHA, KUO HSUN CHEN
  • Patent number: 8386969
    Abstract: A method for designing an overlay target comprises selecting a plurality of overlay target pairs having different overlay errors or offsets, calculating a deviation of the simulated diffraction spectrum for each overlay target pair, selecting a plurality of sensitive overlay target pairs by taking the deviation of the simulated diffraction spectrum into consideration, selecting an objective overlay target pair from the sensitive overlay target pairs by taking the influence of the structural parameters to the simulated diffraction spectrum into consideration, and designing the overlay target pair based on the structural parameter of the objective overlay target pair.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: February 26, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Wei Te Hsu, Yi Sha Ku
  • Patent number: 8321821
    Abstract: A method for designing a two-dimensional array overlay target comprises the steps of: selecting a plurality of two dimensional array overlay targets having different overlay errors; calculating a deviation of a simulated diffraction spectrum for each two-dimensional array overlay target; selecting an error-independent overlay target by taking the deviations of the simulated diffraction spectra into consideration; and designing a two dimensional array overlay target based on structural parameters of the error-independent overlay target.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: November 27, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Yi Sha Ku, Hsiu Lan Pang, Wei Te Hsu, Deh Ming Shyu
  • Patent number: 8319971
    Abstract: The present invention provides a scatterfield microscopical measuring method and apparatus, which combine scatterfield detecting technology into microscopical device so that the microscopical device is capable of measuring the sample whose dimension is under the limit of optical diffraction. The scatterfield microscopical measuring apparatus is capable of being controlled to focus uniform and collimated light beam on back focal plane of an objective lens disposed above the sample. By changing the position of the focus position on the back focal plane, it is capable of being adjusted to change the incident angle with respect to the sample.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: November 27, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Deh-Ming Shyu, Sen-Yih Chou, Yi-Sha Ku