Patents by Inventor Yi-An Sha

Yi-An Sha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120290239
    Abstract: A thin metal film measurement method is disclosed. The method includes the following steps. A respective capacitance is measured before and after a thin metal film is formed. The thickness of the thin metal film is calculated according to the variation of the capacitance. In an embodiment, the capacitance is measured respectively by a capacitance measuring module before and after the thin metal film is formed so as to calculate the thickness of the thin metal film. In another embodiment, a pair of capacitance measuring modules opposite at up and down sides is applied to measure the capacitance before and after the thin metal film is formed so as to calculate the thickness of the thin metal film.
    Type: Application
    Filed: August 23, 2011
    Publication date: November 15, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yi-Sha Ku, Po-Yi Chang, Yi-Chang Chen, Hsiu-lan Pang
  • Patent number: 8250497
    Abstract: A method for designing a two-dimensional array overlay target set comprises the steps of: selecting a plurality of two-dimensional array overlay target sets having different overlay errors; calculating a deviation of a simulated diffraction spectra for each two-dimensional array overlay target set; selecting a sensitive overlay target set by taking the deviations of the simulated diffraction spectra into consideration; and designing a two-dimensional array overlay target set based on the structural parameters of the sensitive overlay target set.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: August 21, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Wei Te Hsu, Yi Sha Ku, Hsiu Lan Pang, Deh Ming Shyu
  • Patent number: 8243012
    Abstract: Color cholesteric liquid crystal display devices and driving methods thereof are provided. A color cholesteric liquid crystal display device includes a color cholesteric liquid crystal display panel with a plurality of sub-pixels. A driving module exerts a first voltage on a portion of sub-pixels of the color cholesteric liquid crystal display panel to hold displaying states of the biased sub-pixels. An input element exerts pressure on the color cholesteric liquid crystal display panel to change displaying states of the unbiased sub-pixels.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: August 14, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Da-Wei Lee, Jyh-Wen Shiu, Yi-An Sha, Yu-Pei Chang
  • Publication number: 20120197592
    Abstract: A system for through silicon via (TSV) structure measurement comprises a reflectometer, and a computing unit. The reflectometer emits a broadband light beam to at least a TSV structure and receives a reflection spectrum of at least a TSV structure. The computing unit is coupled with the reflectometer and determines the depth of the TSV structure in accordance with the reflection spectrum.
    Type: Application
    Filed: May 11, 2011
    Publication date: August 2, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yi Sha KU, Wei Te Hsu
  • Patent number: 8233130
    Abstract: A display panel including a substrate, a first electrode layer, a plurality of partition structures, a liquid display medium, a cap layer, a buffer layer and a second electrode layer is provided. The first electrode layer is disposed on the substrate. The partition structures are disposed on the first electrode layer, exposing a part of the first electrode layer. The liquid display medium is disposed on the first electrode layer between the partition structures. The cap layer is formed on the liquid display medium, and a buffer layer is formed on the cap layer. The second electrode layer is disposed on the buffer layer.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: July 31, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Jhih-Ping Lu, Yi-An Sha, Kuo-Tung Lin, Chen-Chun Hsu
  • Publication number: 20120182118
    Abstract: An over-current protection device includes a conductive composite having a first crystalline fluorinated polymer, a plurality of particulates, a conductive filler, and a non-conductive filler, wherein the plurality of particulates include a second crystalline fluorinated polymer. The first crystalline fluorinated polymer has a crystalline melting temperature of between 150 and 190 degrees Celsius. The plurality of particulates including the second crystalline fluorinated polymer are disposed in the conductive composite, having a crystalline melting temperature of between 320 and 390 degrees Celsius and having a particulate diameter of from 1 to 50 micrometers. The conductive filler and the non-conductive filler are dispersed in the conductive composite.
    Type: Application
    Filed: January 17, 2012
    Publication date: July 19, 2012
    Applicant: Polytronics Technology Corp.
    Inventors: Tong Cheng Tsai, Yi An Sha, David Shau Chew Wang, Fu Hua Chu
  • Publication number: 20120147171
    Abstract: A method for measuring a via bottom profile is disclosed for obtaining a profile of a bottom of a via in a front side of a substrate. In this method, an infrared (IR) light source is transmitted from the back of the substrate to the bottom of the via through an objective by using an IR-microscope, and lights scattered from the bottom of the via are acquired by an image capturing device to generate an image, where the image displays a diameter (2Ea) of the via bottom profile and a diameter (2Ec) of a maximum receivable base area of the via for the IR-microscope. Thereafter, by using an elliptic equation, a minor axis radius thereof (Eb) is obtained, and thus the via bottom profile is obtained from a radius (Ea) of the via bottom profile and the minor axis radius (Eb) of the elliptic equation.
    Type: Application
    Filed: December 28, 2010
    Publication date: June 14, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Deh-Ming Shyu, Yi-Sha Ku, Wei-Te Hsu
  • Patent number: 8198975
    Abstract: An over-current protection device comprises two metal foils, a positive temperature coefficient (PTC) material layer and a packaging material layer. The PTC material layer is sandwiched between the two metal foils and has a volume resistivity below 0.1 ?-cm. The PTC material layer includes (i) plural crystalline polymers having at least one crystalline polymer with a melting point less than 115° C.; (ii) an electrically conductive nickel filler having a volume resistivity less than 500 ??-cm; and (iii) a non-conductive metal nitride filler. The electrically conductive nickel filler and non-conductive metal nitride filler are dispersed in the crystalline polymer. The packaging material layer which encapsulates the chip is essentially comprised of the PTC layer and the two metal foils. The packaging material layer is formed by reacting epoxy resin with a hardener having amide functional group.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: June 12, 2012
    Assignee: Polytronics Technology Corporation
    Inventors: Yi An Sha, Kuo Chang Lo, Chin Piao Yang
  • Patent number: 8169294
    Abstract: An over-current protection device comprises two metal foils and a positive temperature coefficient (PTC) material layer. The PTC material layer is sandwiched between the two metal foils and has a volume resistivity below 0.1 ?-cm. The PTC material layer includes (i) plural crystalline polymers having at least one crystalline polymer of a melting point less than 115° C.; (ii) an electrically conductive nickel filler having a volume resistivity less than 500 ??-cm; and (iii) a non-conductive metal nitride filler. The electrically conductive nickel filler and non-conductive metal nitride filler are dispersed in the crystalline polymer.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: May 1, 2012
    Assignee: Polytronics Technology Corporation
    Inventors: Yi An Sha, Kuo Chang Lo, Fu Hua Chu
  • Patent number: 8139233
    Abstract: A system for via structure measurement is disclosed. The system comprises a reflectometer, a simulation unit and a comparing unit. The reflectometer is configured to collect a measured diffraction spectrum of at least a via. The simulation unit is configured to provide simulated diffraction spectrums of the at least a via. The comparing unit is configured to determine at least a depth and at least a bottom profile of the at least a via by comparing the collected diffraction spectrum and the simulated diffraction spectrums.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: March 20, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Yi Sha Ku, Wei Te Hsu, Hsiu Lan Pang, Deh Ming Shyu
  • Patent number: 8089595
    Abstract: Transflective liquid crystal displays and fabrication methods thereof. A single gap transflective liquid crystal display includes a first substrate with a reflective region and a transmissive region. A second substrate opposes the first substrate with a gap therebetween. A liquid crystal layer is disposed between the first and second substrates. A color filter is disposed on the first substrate, wherein the color filter is thicker in the transmissive region than in the reflective region, wherein a recess is formed at the reflective region. A first alignment layer is conformably formed on the color filter, forming a second recess in the reflective region. The second recess is filled with a second alignment, wherein the first and second alignment layers provide different orientations and pre-tilt angles for the liquid crystal layer.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: January 3, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Hao Chen, Chi-Chang Liao, Yi-An Sha
  • Publication number: 20110320986
    Abstract: A method for designing an overlay target comprises selecting a plurality of overlay target pairs having different overlay errors or offsets, calculating a deviation of the simulated diffraction spectrum for each overlay target pair, selecting a plurality of sensitive overlay target pairs by taking the deviation of the simulated diffraction spectrum into consideration, selecting an objective overlay target pair from the sensitive overlay target pairs by taking the influence of the structural parameters to the simulated diffraction spectrum into consideration, and designing the overlay target pair based on the structural parameter of the objective overlay target pair.
    Type: Application
    Filed: September 6, 2011
    Publication date: December 29, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: WEI TE HSU, YI SHA KU
  • Publication number: 20110241818
    Abstract: An over-current protection device comprises two metal foils, a positive temperature coefficient (PTC) material layer and a packaging material layer. The PTC material layer is sandwiched between the two metal foils and has a volume resistivity below 0.1 ?-cm. The PTC material layer includes (i) plural crystalline polymers having at least one crystalline polymer with a melting point less than 115° C.; (ii) an electrically conductive nickel filler having a volume resistivity less than 500 ??-cm; and (iii) a non-conductive metal nitride filler. The electrically conductive nickel filler and non-conductive metal nitride filler are dispersed in the crystalline polymer. The packaging material layer which encapsulates the chip is essentially comprised of the PTC layer and the two metal foils. The packaging material layer is formed by reacting epoxy resin with a hardener having amide functional group.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 6, 2011
    Inventors: Yi An Sha, Kuo Chang Lo, Chin Piao Yang
  • Publication number: 20110217462
    Abstract: A method for manufacturing an insulated heat conductive substrate comprises the steps of: performing hydrolysis and condensation of at least one thermally conductive ceramic powder to prepare at least one modified thermally conductive ceramic powder, which comprises a plurality of modified powder particles, each grafted with an organic material; mixing the at least one modified thermally conductive ceramic powder with two substantially mutually soluble polymers to achieve a uniform mixture; blending the uniform mixture with a curing agent to obtain a melt extrudable dielectric curable material; extruding the dielectric curable material through a slit to form a sheet-like substrate; and disposing a first film and a second film on two side surfaces of the substrate to obtain an insulated heat conductive substrate, wherein each of the first and second films can be either a metal foil or a release film.
    Type: Application
    Filed: May 12, 2011
    Publication date: September 8, 2011
    Applicant: POLYTRONICS TECHNOLOGY CORP.
    Inventors: DAVID SHAU CHEW WANG, YI AN SHA, KUO HSUN CHEN
  • Publication number: 20110214852
    Abstract: A heat conductive dielectric polymer material comprises a polymer, a curing agent and a heat conductive filler. The polymer comprises a thermoplastic and a thermosetting epoxy resin. The thermoplastic comprises 3% to 30% by volume of the heat conductive dielectric polymer material, and the thermosetting epoxy is selected from end-epoxy-function group epoxy resin, side chain epoxy function group epoxy resin, multi-function group epoxy resin or the mixture thereof. The curing agent can cure the thermosetting epoxy resin at a temperature. The heat conductive filler is uniformly distributed in the polymer and comprises 40% to 70% by volume of the heat conductive dielectric polymer material. The heat conductive dielectric polymer material has an interpenetrating network structure, and the heat conductive coefficient is greater than 1.0 W/m-K.
    Type: Application
    Filed: May 17, 2011
    Publication date: September 8, 2011
    Applicant: POLYTRONICS TECHNOLOGY CORP.
    Inventors: DAVID SHAU CHEW WANG, YI AN SHA, KUO HSUN CHEN
  • Publication number: 20110176077
    Abstract: Driving methods for cholesteric liquid crystal display devices are provided. The driving method includes providing a cholesteric liquid crystal display, wherein the capacitance detector corresponds to a driving module; outputting a capacitance sensing voltage waveform from the driving module to the cholesteric liquid crystal display panel such that a capacitance value of the cholesteric liquid crystal layer is acquired and stored in the memory; and when the capacitance value falls in a capacitance range of a second displaying state, the capacitance detector outputs a second sensing result, and when the capacitance value falls in a capacitance range of a first displaying state, the capacitance detector outputs a first sensing result.
    Type: Application
    Filed: March 31, 2011
    Publication date: July 21, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: DA-WEI LEE, Yi-An Sha, Jyh-Wen Shiu
  • Publication number: 20110172974
    Abstract: A system for via structure measurement is disclosed. The system comprises a reflectometer, a simulation unit and a comparing unit. The reflectometer is configured to collect a measured diffraction spectrum of at least a via. The simulation unit is configured to provide simulated diffraction spectrums of the at least a via. The comparing unit is configured to determine at least a depth and at least a bottom profile of the at least a via by comparing the collected diffraction spectrum and the simulated diffraction spectrums.
    Type: Application
    Filed: March 17, 2010
    Publication date: July 14, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yi Sha KU, Wei Te Hsu, Hsiu Lan Pang, Deh Ming Shyu
  • Publication number: 20110156859
    Abstract: An over-current protection device comprises two metal foils and a positive temperature coefficient (PTC) material layer. The PTC material layer is sandwiched between the two metal foils and has a volume resistivity below 0.1 ?-cm. The PTC material layer includes (i) plural crystalline polymers having at least one crystalline polymer of a melting point less than 115° C.; (ii) an electrically conductive nickel filler having a volume resistivity less than 500 ??-cm; and (iii) a non-conductive metal nitride filler. The electrically conductive nickel filler and non-conductive metal nitride filler are dispersed in the crystalline polymer.
    Type: Application
    Filed: April 28, 2010
    Publication date: June 30, 2011
    Inventors: Yi An Sha, Kuo Chang Lo, Fu Hua Chu
  • Publication number: 20110154272
    Abstract: A method for designing a two-dimensional array overlay target set comprises the steps of: selecting a plurality of two-dimensional array overlay target sets having different overlay errors; calculating a deviation of a simulated diffraction spectra for each two-dimensional array overlay target set; selecting a sensitive overlay target set by taking the deviations of the simulated diffraction spectra into consideration; and designing a two-dimensional array overlay target set based on the structural parameters of the sensitive overlay target set.
    Type: Application
    Filed: December 29, 2009
    Publication date: June 23, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wei Te Hsu, Yi Sha Ku, Hsiu Lan Pang, Deh Ming Shyu
  • Publication number: 20110131538
    Abstract: A method for designing a two-dimensional array overlay target comprises the steps of: selecting a plurality of two dimensional array overlay targets having different overlay errors; calculating a deviation of a simulated diffraction spectrum for each two-dimensional array overlay target; selecting an error-independent overlay target by taking the deviations of the simulated diffraction spectra into consideration; and designing a two dimensional array overlay target based on structural parameters of the error-independent overlay target.
    Type: Application
    Filed: December 28, 2009
    Publication date: June 2, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yi Sha KU, Hsiu Lan Pang, Wei Te Hsu, Deh Ming Shyu