Patents by Inventor Yi Chang

Yi Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240152034
    Abstract: An optical element driving mechanism is provided, which includes a movable portion, a fixed portion and a driving assembly. The movable portion is connected with an optical element. The movable portion is movable relative to the fixed portion. The driving assembly is configured to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: November 3, 2023
    Publication date: May 9, 2024
    Inventors: Chen-Hung CHAO, Po-Xiang ZHUANG, Chao-Chang HU, Yi-Ho CHEN
  • Publication number: 20240151932
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 28, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240152033
    Abstract: An optical system is provided, including a movable part, a fixed part, and a driving assembly. The movable part is connected to a first optical element. The movable part is movable relative to the fixed part. The fixed part has a fixed part opening, wherein a light passes through the fixed part opening. The driving assembly drives the movable part to move relative to the fixed part. The first optical element at least partially overlaps the fixed part opening when the movable part is in a first position. When the movable part is in an extreme position, the first optical element does not overlap the fixed part opening.
    Type: Application
    Filed: November 3, 2023
    Publication date: May 9, 2024
    Inventors: Chen-Hung CHAO, Po-Xiang ZHUANG, Chao-Chang HU, Yi-Ho CHEN, Wei-Jhe SHEN
  • Publication number: 20240155234
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 27, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240152032
    Abstract: A dynamic aperture module includes a blade set and a driving portion. The blade set includes a plurality of blades, which are disposed around an optical axis to form a light through hole and rotatable for adjusting the light through hole. The driving portion includes a rotating element, at least one magnet and at least one coil. The rotating element corresponds to the blades and is configured to drive the blades to rotate, so that a dimension of the light through hole is variable. The magnet includes four polarities. The polarities of the magnet are relatively distributed along a direction surrounding the optical axis and a direction parallel to the optical axis, respectively. The coil corresponds to the magnet, and one of the magnet and the coil is disposed on the rotating element. The magnet and the coil are disposed along the direction parallel to the optical axis.
    Type: Application
    Filed: November 2, 2023
    Publication date: May 9, 2024
    Inventors: Yu-Tzu CHANG, Hao-Jan CHEN, Hsiu-Yi HSIAO, Ming-Ta CHOU
  • Publication number: 20240151936
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 27, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240151935
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 8, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240150568
    Abstract: The invention provides a high thermal conductivity fluororesin composition and products thereof. The high thermal conductivity fluororesin composition includes a polytetrafluoroethylene resin, a fluorine-containing copolymer, spherical inorganic fillers and impregnation aids.
    Type: Application
    Filed: March 16, 2023
    Publication date: May 9, 2024
    Inventors: Te-Chao Liao, Hung-Yi Chang, Chia-Lin Liu, Wei-Ru Huang
  • Publication number: 20240150547
    Abstract: A composite material substrate includes an inorganic filler, a resin composition, and a dispersant. The resin composition includes a bismaleimide resin, a naphthalene ring-containing epoxy resin, and a benzoxazine resin. The inorganic filler, the resin composition, and the dispersant are mixed together.
    Type: Application
    Filed: November 23, 2022
    Publication date: May 9, 2024
    Applicant: NAN YA PLASTICS CORPORATION
    Inventors: Te-Chao Liao, Hung-Yi Chang, Chia-Lin Liu, Wei-Ru Huang
  • Publication number: 20240152035
    Abstract: An optical system is provided, including a fixed part, a movable part, and a driving assembly. The fixed part has an opening. A light passes through the opening. The movable part is movable relative to the fixed part and connected to a first optical element. The driving assembly drives the movable part to move relative to the fixed part. The first optical element at least partially overlaps the opening when the movable part is in a first position. The first optical element further includes a first optical element surface, and the first optical element surface faces the light.
    Type: Application
    Filed: November 3, 2023
    Publication date: May 9, 2024
    Inventors: Chen-Hung CHAO, Po-Xiang ZHUANG, Chao-Chang HU, Yi-Ho CHEN, Wei-Jhe SHEN
  • Publication number: 20240152029
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: November 2, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Patent number: 11978492
    Abstract: The disclosed system and method reduce on-chip power IR drop caused by large write current, to increase the write IO number or improve write throughput and to suppress write voltage ripple at the start and end of a write operation. The disclosed systems and methods are described in relation to stabilizing the bit line voltage for MRAMs, however, the disclosed systems and methods can be used to stabilize the bit line voltage of any memory configuration that draws large currents during short write pulses or, more generally, to selectively assist a power supply generator in supplying adequate power to a load at times of large power consumption.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: May 7, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-An Chang, Po-Hao Lee, Yi-Chun Shih
  • Patent number: 11978664
    Abstract: A method includes forming a first conductive feature over a semiconductor substrate, forming an ILD layer over the first conductive feature, patterning the ILD layer to form a trench, and forming a conductive layer over the patterned ILD layer to fill the trench. The method further includes polishing the conductive layer to form a via contact configured to interconnect the first conductive feature with a second conductive feature, where polishing the conductive layer exposes a top surface of the ILD layer, polishing the exposed top surface of the ILD layer, such that a top portion of the via contact protrudes from the exposed top surface of the ILD layer, and forming the second conductive feature over the via contact, such that the top portion of the via contact extends into the second conductive feature.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: May 7, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Pang-Sheng Chang, Chao-Hsun Wang, Kuo-Yi Chao, Fu-Kai Yang, Mei-Yun Wang, Li-Chieh Wu, Chun-Wei Hsu
  • Patent number: 11974983
    Abstract: The disclosure provides methods for treating estrogen receptor positive (ER+) cancer in women with an effective amount of lasofoxifene, a pharmaceutically acceptable salt thereof, or a prodrug thereof. The disclosure also includes the detection of the Estrogen Receptor 1 (ESR1) gene mutations that lead to endocrine resistance and treatment of endocrine resistant ER+ cancers.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: May 7, 2024
    Assignee: Duke University
    Inventors: Kaitlyn Andreano, Ching-yi Chang, Donald P. McDonnell, Stephanie L. Gaillard
  • Publication number: 20240145389
    Abstract: A semiconductor chip includes a first intellectual property block. There are a second intellectual property block and a third intellectual property block around the first intellectual property block. There is a multiple metal layer stack over the first intellectual property block, the second intellectual property block, and the third intellectual property block. An interconnect structure is situated in the upper portion of the multiple metal layer stack. The interconnect structure is configured for connecting the first intellectual property block and the second intellectual property block. In addition, at least a part of the interconnect structure extends across and over the third intellectual property block.
    Type: Application
    Filed: July 28, 2023
    Publication date: May 2, 2024
    Inventors: Li-Chiu WENG, Yew Teck TIEO, Ming-Hsuan WANG, Chia-Cheng CHEN, Wei-Yi CHANG, Jen-Hang YANG, Chien-Hsiung HSU
  • Publication number: 20240145575
    Abstract: A semiconductor device includes a substrate, a channel layer, a first barrier layer, a source/drain contact, and a gate layer. The channel layer is on the substrate. The first barrier layer is on the channel layer and the thickness of the first barrier layer is less than 6 nm. The source/drain contact is on the first barrier layer and is directly contact with the first barrier layer. The gate layer is over the first barrier layer.
    Type: Application
    Filed: May 3, 2023
    Publication date: May 2, 2024
    Inventors: Edward Yi CHANG, You-Chen WENG, Min-Lu KAO
  • Publication number: 20240142748
    Abstract: An optical system is provided. The optical system is used for disposing on an electronic device. The optical system includes a movable portion, a fixed portion, a first driving assembly, and a support module. The movable portion is used for connecting to an optical module. The fixed portion is affixed on the electronic device, and the movable portion is movable relative to the fixed portion. The first driving assembly is used for driving the movable portion to move relative to the fixed portion. The movable portion is movably connected to the fixed portion through the support module.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 2, 2024
    Inventors: Ying-Jen WANG, Ya-Hsiu WU, Chen-Chi KUO, Chao-Chang HU, Yi-Ho CHEN, Che-Wei CHANG, Ko-Lun CHAO, Sin-Jhong SONG
  • Publication number: 20240142664
    Abstract: Two types of blue light blocking contact lenses are provided and are formed by curing different compositions. The first composition includes a blue light blocking component formed by mixing or reacting a first hydrophilic monomer and a yellow dye, a first colored dye component formed by mixing or reacting a second hydrophilic monomer and a first colored dye, at least one third hydrophilic monomer, a crosslinker, and an initiator. The first colored dye includes a green dye, a cyan dye, a blue dye, an orange dye, a red dye, a black dye, or combinations thereof. The second composition includes a blue light blocking component, at least one hydrophilic monomer, a crosslinker, and an initiator. The blue light blocking component is formed by mixing or reacting glycerol monomethacrylate and a yellow dye. Further, methods for preparing the above contact lenses are provided.
    Type: Application
    Filed: February 12, 2023
    Publication date: May 2, 2024
    Inventors: Han-Yi CHANG, Chun-Han CHEN, Tsung-Kao HSU, Wei-che WANG, Yu-Hung LIN, Wan-Ying GAO, Li-Hao LIU
  • Publication number: 20240144467
    Abstract: A hot spot defect detecting method and a hot spot defect detecting system are provided. In the method, hot spots are extracted from a design of a semiconductor product to define a hot spot map comprising hot spot groups, wherein local patterns in a same context of the design yielding a same image content are defined as a same hot spot group. During runtime, defect images obtained by an inspection tool performing hot scans on a wafer manufactured with the design are acquired and the hot spot map is aligned to each defect image to locate the hot spot groups. The hot spot defects in each defect image are detected by dynamically mapping the hot spot groups located in each defect image to a plurality of threshold regions and respectively performing automatic thresholding on pixel values of the hot spots of each hot spot group in the corresponding threshold region.
    Type: Application
    Filed: January 8, 2024
    Publication date: May 2, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Huei Chen, Pei-Chao Su, Xiaomeng Chen, Chan-Ming Chang, Shih-Yung Chen, Hung-Yi Chung, Kuang-Shing Chen, Li-Jou Lee, Yung-Cheng Lin, Wei-Chen Wu, Shih-Chang Wang, Chien-An Lin
  • Publication number: 20240145691
    Abstract: The present invention is related to a novel positive electrode active material for lithium-ion battery. The positive electrode active material is expressed by the following formula: Li1.2NixMn0.8-x-yZnyO2, wherein x and y satisfy 0<x?0.8 and 0<y?0.1. In addition, the present invention provides a method of manufacturing the positive electrode active material. The present invention further provides a lithium-ion battery which uses said positive electrode active material.
    Type: Application
    Filed: March 14, 2023
    Publication date: May 2, 2024
    Inventors: CHUAN-PU LIU, YIN-WEI CHENG, SHIH-AN WANG, BO-LIANG PENG, CHUN-HUNG CHEN, JUN-HAN HUANG, YI-CHANG LI