Patents by Inventor Yingdong Luo

Yingdong Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11239213
    Abstract: A method of fabricating a multi-color display includes dispensing a photo-curable fluid over a display having an array of LEDs disposed below a cover layer. The cover has an outer surface with a plurality of recesses, and the photo-curable fluid fills the recesses. The photo-curable fluid includes a color conversion agent. A plurality of LEDs in the array are activated to illuminate and cure the photo-curable fluid to form a color conversion layer in the recesses over the activated LEDs. This layer will convert light from these LEDs to light of a first color. An uncured remainder of the photo-curable fluid is removed. Then the process is repeated with a different photo-curable fluid having a different color conversion agent and a different plurality of LEDs. This forms a second color conversion layer in different plurality of recesses to convert light from these LEDs to light of a second color.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: February 1, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20220029068
    Abstract: A photocurable composition includes a nanomaterial selected to emit radiation in a first wavelength band in the visible light range in response to absorption of radiation in a second wavelength band in the UV or visible light range. The second wavelength band is different than the first wavelength band. The photocurable composition further includes one or more (meth)acrylate monomers, a thiol crosslinker, and a photoinitiator that initiates polymerization of the one or more (meth)acrylate monomers in response to absorption of radiation in the second wavelength band.
    Type: Application
    Filed: July 20, 2021
    Publication date: January 27, 2022
    Inventors: Yingdong Luo, Sivapackia Ganapathiappan, Daihua Zhang, Hou T. Ng, Nag B. Patibandla
  • Publication number: 20220017699
    Abstract: An implementation described herein provides a binder ink mixture for 3D printing of ceramic parts in a binder jet process. The binder ink mixture includes a molecular space filler and a free radical initiator.
    Type: Application
    Filed: July 20, 2020
    Publication date: January 20, 2022
    Inventors: Yingdong Luo, Sivapackia Ganapathiappan, Daihua Zhang, Hou T. Ng, Nag B. Patibandla
  • Publication number: 20210379726
    Abstract: A polishing pad for a semiconductor fabrication operation includes a polishing region and a window region, wherein both regions are made of an interpenetrating polymer network formed from a free-radically polymerized material and a cationically polymerized material.
    Type: Application
    Filed: June 9, 2020
    Publication date: December 9, 2021
    Inventors: Uma Sridhar, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Rajeev Bajaj, Daniel Redfield, Mayu Felicia Yamamura, Yingdong Luo, Nag B. Patibandla
  • Publication number: 20210379725
    Abstract: Interpenetrating polymer networks (IPNs) for a forming polishing pad for a semiconductor fabrication operation are disclosed. Techniques for forming the polishing pads are provided. In an exemplary embodiment, a polishing pad includes an interpenetrating polymer network formed from a free-radically polymerized material and a cationically polymerized material.
    Type: Application
    Filed: June 9, 2020
    Publication date: December 9, 2021
    Inventors: Uma Sridhar, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Mayu Felicia Yamamura, Daniel Redfield, Rajeev Bajaj, Yingdong Luo, Nag B. Patibandla
  • Publication number: 20210358742
    Abstract: A multi-color display includes a backplane having backplane circuitry, an array of micro-LEDs electrically integrated with backplane circuitry of the backplane, a first color conversion layer over each of a first plurality of light emitting diodes, a second color conversion layer over each of a second plurality of light emitting diodes, and a plurality of isolation walls separating adjacent micro-LEDs of the array. The micro-LEDs of the array are configured to generate illumination of the same wavelength range, the first color conversion layer converts the illumination to light of a first color, and the second color conversion layer converts the illumination to light of a different second color.
    Type: Application
    Filed: July 29, 2021
    Publication date: November 18, 2021
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Patent number: 11094530
    Abstract: A method of fabricating a multi-color display includes dispensing a photo-curable fluid that includes a color conversion agent over a display having a backplane and an array of light emitting diodes electrically integrated with backplane circuitry of the backplane, activating a plurality of light emitting diodes in the array of light emitting diodes to illuminate and cure the first photo-curable fluid to form a color conversion layer over each of the first plurality of light emitting diodes to convert light from the plurality of light emitting diodes to light of a first color, and removing an uncured remainder of the first photo-curable fluid. This process is repeated with a fluid having different color conversion components for another color.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: August 17, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20210223686
    Abstract: Embodiments of the present disclosure generally relate to imprint compositions and materials and related processes useful for nanoimprint lithography (NIL). In one or more embodiments, an imprint composition contains one or more types of nanoparticles, one or more surface ligands, one or more solvents, one or more additives, and one or more acrylates.
    Type: Application
    Filed: July 28, 2020
    Publication date: July 22, 2021
    Inventors: Amita JOSHI, Ian Matthew MCMACKIN, Rami HOURANI, Yingdong LUO, Sivapackia GANAPATHIAPPAN, Ludovic GODET
  • Publication number: 20210054222
    Abstract: A formulation, system, and method for additive manufacturing of a polishing pad. The formulation includes monomer, dispersant, and nanoparticles. A method of preparing the formulation includes adding a dispersant that is a polyester derivative to monomer, adding metal-oxide nanoparticles to the monomer, and subjecting the monomer having the nanoparticles and dispersant to sonication to disperse the nanoparticles in the monomer.
    Type: Application
    Filed: August 18, 2020
    Publication date: February 25, 2021
    Inventors: Yingdong Luo, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Daihua Zhang, Uma Sridhar, Daniel Redfield, Rajeev Bajaj, Nag B. Patibandla, Hou T. Ng, Sudhakar Madhusoodhanan
  • Publication number: 20200411351
    Abstract: A method for printing on a substrate includes printing a support structure by printing a liquid precursor material and curing the liquid precursor material, positioning a substrate within the support structure, printing one or more anchors on the substrate and the support structure by printing and curing the liquid precursor material to secure the substrate to the support structure, and printing one or more device structures on the substrate while anchored by printing and curing the liquid precursor material.
    Type: Application
    Filed: April 2, 2020
    Publication date: December 31, 2020
    Inventors: Daihua Zhang, Hou T. Ng, Nag B. Patibandla, Sivapackia Ganapathiappan, Yingdong Luo, Kyuil Cho, Han-Wen Chen
  • Publication number: 20200411312
    Abstract: A method for printing on a substrate includes printing a support structure by printing a liquid precursor material and curing the liquid precursor material, printing one or more alignment markers by printing the liquid precursor material outside the support structure and curing the liquid precursor material, positioning a substrate within the support structure, performing a registration of the substrate using the one or more alignment markers, and printing one or more device structures on the substrate while registered by printing and curing the liquid precursor material.
    Type: Application
    Filed: April 2, 2020
    Publication date: December 31, 2020
    Inventors: Daihua Zhang, Hou T. Ng, Nag B. Patibandla, Sivapackia Ganapathiappan, Yingdong Luo, Kyuil Cho, Han-Wen Chen
  • Publication number: 20200411447
    Abstract: A method of printing structures on a reconstructed wafer includes positioning a plurality of semiconductor dies on a support substrate, anchoring the plurality of semiconductor dies to the support substrate by printing a plurality of anchors that extend across edges of the semiconductor dies onto the support substrate and thus form a reconstructed wafer, and printing one or more device structures on the pluralities of semiconductor dies while anchored on the support substrate. The printing operations include ejecting droplets of a liquid precursor material and curing the liquid precursor material.
    Type: Application
    Filed: April 2, 2020
    Publication date: December 31, 2020
    Inventors: Daihua Zhang, Hou T. Ng, Nag B. Patibandla, Sivapackia Ganapathiappan, Yingdong Luo, Kyuil Cho, Han-Wen Chen
  • Publication number: 20200373279
    Abstract: A photocurable composition includes a nanomaterial selected to emit radiation in a first wavelength band in the visible light range in response to absorption of radiation in a second wavelength band in the UV or visible light range, one or more (meth)acrylate monomers, and a photoinitiator that initiates polymerization of the one or more (meth)acrylate monomers in response to absorption of radiation in the second wavelength band. The second wavelength band is different than the first wavelength band. A light-emitting device includes a plurality of light-emitting diodes and the cured photocurable composition in contact with a surface through which radiation in a first wavelength band in the UV or visible light range is emitted from each of the light-emitting diodes.
    Type: Application
    Filed: May 24, 2019
    Publication date: November 26, 2020
    Inventors: Sivapackia Ganapathiappan, Yingdong Luo, Daihua Zhang, Hou T. Ng, Mingwei Zhu, Nag B. Patibandla
  • Publication number: 20200365566
    Abstract: A method of fabricating a multi-color display includes dispensing a photo-curable fluid over a display having an array of LEDs disposed below a cover layer. The cover has an outer surface with a plurality of recesses, and the photo-curable fluid fills the recesses. The photo-curable fluid includes a color conversion agent. A plurality of LEDs in the array are activated to illuminate and cure the photo-curable fluid to form a color conversion layer in the recesses over the activated LEDs. This layer will convert light from these LEDs to light of a first color. An uncured remainder of the photo-curable fluid is removed. Then the process is repeated with a different photo-curable fluid having a different color conversion agent and a different plurality of LEDs. This forms a second color conversion layer in different plurality of recesses to convert light from these LEDs to light of a second color.
    Type: Application
    Filed: May 17, 2019
    Publication date: November 19, 2020
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20200365774
    Abstract: A method of fabricating a multi-color display includes dispensing a photo-curable fluid that includes a color conversion agent over a display having a backplane and an array of light emitting diodes electrically integrated with backplane circuitry of the backplane, activating a plurality of light emitting diodes in the array of light emitting diodes to illuminate and cure the first photo-curable fluid to form a color conversion layer over each of the first plurality of light emitting diodes to convert light from the plurality of light emitting diodes to light of a first color, and removing an uncured remainder of the first photo-curable fluid. This process is repeated with a fluid having different color conversion components for another color.
    Type: Application
    Filed: May 14, 2019
    Publication date: November 19, 2020
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20200325353
    Abstract: Polishing articles and methods of manufacturing polishing articles used in polishing processes and cleaning processes are provided. More particularly, implementations disclosed herein relate to composite polishing articles having tunable properties such as hydrophilicity and zeta potential. 3D printed chemical-mechanical planarization (CMP) pads composed of UV curable acrylic chemistry are generally hydrophobic in nature. Such hydrophobic behavior affects the wetting properties with abrasive-based polishing slurries such as ceria-base slurries. However, in order to increase the planarization and removal rate while decreasing defects, hydrophilic pads are preferred. In addition, it is desirable that the zeta potential (Zp) of the pads be tunable over a wide range of conditions at different pH values. Implementations of the present disclosure include methods for increasing the hydrophilicity and tuning the Zp of the pads with anionic additives and pads produced using these methods.
    Type: Application
    Filed: October 30, 2019
    Publication date: October 15, 2020
    Inventors: Uma SRIDHAR, Sivapackia GANAPATHIAPPAN, Ashwin CHOCKALINGAM, Yingdong LUO, Daniel REDFIELD, Rajeev BAJAJ, Nag B. PATIBANDLA, Hou T. NG, Sudhakar MADHUSOODHANAN
  • Publication number: 20200247937
    Abstract: The present invention generally relates to covalent network polymers prepared from an imine-linked oligomer and an independent crosslinker comprising reactive moieties selected from the group consisting of epoxy, isocyanate, bismaleimide, sulfide, polyurethane, anhydride, polyester and combinations thereof. The covalent network polymers disclosed herein are advantageously made by anhydrous reactions, which enables the highest known glass transition temperatures to date for this class of materials. Further, the disclosed covalent network polymers can be formed in continuous processes, such as additive manufacturing processes that produce three-dimensional objects or roll-to-roll processes that produce covalent network polymer films or fully cured prepreg in various size formats.
    Type: Application
    Filed: September 6, 2019
    Publication date: August 6, 2020
    Inventors: Philip Taynton, Yingdong Luo, Heather Rubin, Denis Kissounko, Samuel Loob, Sarah Sadowski
  • Patent number: 9315637
    Abstract: Junction-functionalized block copolymers can be used in forming nanostructures. A junction-functionalized block copolymer can include a first polymer block joined to a second polymer block by a junction, where the junction includes one or more electrostatically charged moieties. The block copolymer can include a moiety of formula (I): A-J-B??(I) where A is a first polymer block, B is a second polymer block, where the A block and the B block are chemically dissimilar, and J is a junction linking the A block to the B block, and including one or more electrostatically charged moieties.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: April 19, 2016
    Assignee: The Regents of the University of California
    Inventors: Damien Montarnal, Yingdong Luo, Craig J. Hawker, Edward J. Kramer, Glenn H. Frederickson
  • Publication number: 20150197607
    Abstract: Junction-functionalized block copolymers can be used in forming nanostructures. A junction-functionalized block copolymer can include a first polymer block joined to a second polymer block by a junction, where the junction includes one or more electrostatically charged moieties. The block copolymer can include a moiety of formula (I): A-J-B??(I) where A is a first polymer block, B is a second polymer block, where the A block and the B block are chemically dissimilar, and J is a junction linking the A block to the B block, and including one or more electrostatically charged moieties.
    Type: Application
    Filed: December 17, 2014
    Publication date: July 16, 2015
    Inventors: Damien Montarnal, Yingdong Luo, Craig J. Hawker, Edward J. Kramer, Glenn H. Fredrickson
  • Publication number: 20040059629
    Abstract: A system and method that generate marketing intelligence by auditing the effectiveness of different segments of a cross platform marketing device. The system and method allow for coordinated media for marketing purposes. The coordinated media can include graphical displays, textual displays, and various pockets holding marketing materials with embedded smart tags or smart labels. The displays can cyclically change what products or offers are displayed. Each displayed product can be linked to one or more of the materials in specific pockets. In this manner, when a product or offer is shown and a predetermined number of marketing materials are taken from the specific pocket, marketing intelligence is generated as to the effectiveness of the display and the marketing materials based partially on the smart tags or labels. The marketing materials can be a coupon or voucher.
    Type: Application
    Filed: September 20, 2002
    Publication date: March 25, 2004
    Applicant: I.E. Control Solutions, Inc.
    Inventors: Yingdong Luo, Tao Li