Patents by Inventor Yong Cao

Yong Cao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9746678
    Abstract: Light wave separation lattices and methods of formation are provided herein. In some embodiments, a light wave separation lattice includes a first layer having the formula ROXNY, wherein the first layer has a first refractive index; and a second layer, different from the first layer, disposed atop the first layer, and having the formula R?OXNY, wherein the second layer has a second refractive index different from the first refractive index, and wherein R and R? are each one of a metal or a dielectric material. In some embodiments, a method of forming a light wave separation lattice includes depositing a first layer having a predetermined desired refractive index atop a substrate by a physical vapor deposition process; and depositing a second layer, different from the first layer, atop the first layer, wherein the second layer has a predetermined second refractive index different from the first refractive index.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: August 29, 2017
    Assignee: APPLIED MATERIALS
    Inventors: Daniel Lee Diehl, Yong Cao, Mingwei Zhu, Tai-Chou Papo Chen
  • Publication number: 20170179541
    Abstract: An insulating mother board, an insulating harness mother board assembly and a battery module including the insulating mother board are provided. The insulating mother board includes a first end insulating board, a middle insulating board and a second end insulating board moveably connected in sequence. According to the insulating mother board, an arbitrary number of middle insulating boards can be arranged by arranging the first end insulating board and the second end insulating board on two ends of the insulating mother board respectively. There may be an arbitrary number of connection holes on the first end insulating board, the middle insulating board and the second end insulating board, each connection hole corresponds to one single battery. In this way, an assembly of different numbers of single batteries can be achieved.
    Type: Application
    Filed: September 15, 2015
    Publication date: June 22, 2017
    Applicant: CHINA AVIATION LITHIUM BATTERY CO., LTD.
    Inventors: Qixin GUO, Yong CAO, Qiu XIE, Wei LI
  • Patent number: 9684101
    Abstract: An optical zoom structure includes an amplifying set, a focusing set, and an image display region. The amplifying set resembles the diverging optical effect and includes a first fixed focal set and a first liquid crystal lens. The focusing set resembles a converging optical effect and includes a second fixed focal set and a second liquid crystal lens. The first liquid crystal lens and the second fixed focal set are disposed between the first fixed focal set and the second liquid crystal lens. The first distance is from the first fixed focal set to the first liquid crystal lens. The second distance is from the first liquid crystal lens to the second fixed focal set. The third distance is from the second fixed focal set to the second liquid crystal lens. The fourth distance is from the second first liquid crystal lens to the image display region.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: June 20, 2017
    Assignee: SILICON TOUCH TECHNOLOGY INC.
    Inventors: Chi-Yuan Chin, Zhi Gao Xu, Lin Ping Zhang, Yong Cao
  • Publication number: 20170162511
    Abstract: An interconnect structure for use in semiconductor devices and a method for fabricating the same is described. The method includes positioning a substrate in a vacuum processing chamber, wherein the substrate comprises a copper layer having an exposed surface and a low-k dielectric layer having an exposed surface, forming a metal layer over the exposed surface of the copper layer, wherein the exposed surface of the low-k dielectric layer is free from the metal layer, and forming a metal-based dielectric layer over the metal layer and over at least part of the exposed low-k dielectric surface, wherein the metal-based dielectric layer comprises an aluminum compound.
    Type: Application
    Filed: February 22, 2017
    Publication date: June 8, 2017
    Inventors: He REN, Mehul B. NAIK, Yong CAO, Mei-yee SHEK
  • Publication number: 20170125215
    Abstract: Methods are disclosed for depositing a thin film of compound material on a substrate. In some embodiments, a method of depositing a layer of compound material on a substrate include: flowing a reactive gas into a plasma processing chamber having a substrate to be sputter deposited disposed therein in opposition to a sputter target comprising a metal; exciting the reactive gas into a reactive gas plasma to react with the sputter target and to form a first layer of compound material thereon; flowing an inert gas into the plasma processing chamber; and exciting the inert gas into a plasma to sputter a second layer of the compound material onto the substrate directly from the first layer of compound material. The cycles of target poisoning and sputtering may be repeated until a compound material layer of appropriate thickness has been formed on the substrate.
    Type: Application
    Filed: December 31, 2015
    Publication date: May 4, 2017
    Inventors: Yana CHENG, Zhefeng LI, Chi Hong CHING, Yong CAO, Rongjun WANG
  • Patent number: 9633824
    Abstract: Embodiments of apparatus for physical vapor deposition are provided. In some embodiments, a target assembly for use in a substrate processing system to process a substrate includes a plate having a first side and an opposing second side, wherein the second side comprises a target supporting surface extending from the second side in a direction normal to the second side, wherein the target supporting surface has a first diameter and is bounded by a first edge; and a target having a first side bonded to the target supporting surface, wherein a diameter of the target is greater than the first diameter of the target supporting surface.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: April 25, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Thanh X. Nguyen, Yong Cao, Muhammad Rasheed, Xianmin Tang
  • Patent number: 9633839
    Abstract: In some embodiments a method of processing a substrate disposed atop a substrate support in a physical vapor deposition process chamber includes: (a) depositing a dielectric layer to a first thickness atop a first surface of the substrate via a physical vapor deposition process; (b) providing a first plasma forming gas to a processing region of the physical vapor deposition process chamber, wherein the first plasma forming gas comprises hydrogen but not carbon; (c) providing a first amount of bias power to a substrate support to form a first plasma from the first plasma forming gas within the processing region of the physical vapor deposition process chamber; (d) exposing the dielectric layer to the first plasma; and (e) repeating (a)-(d) to deposit the dielectric film to a final thickness.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: April 25, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Weimin Zeng, Thanh X. Nguyen, Yana Cheng, Yong Cao, Daniel Lee Diehl, Srinivas Guggilla, Rongjun Wang, Xianmin Tang
  • Publication number: 20170098575
    Abstract: In some embodiments, a method of forming an interconnect structure includes selectively depositing a barrier layer atop a substrate having one or more exposed metal surfaces and one or more exposed dielectric surfaces, wherein a thickness of the barrier layer atop the one or more exposed metal surfaces is greater than the thickness of the barrier layer atop the one or more exposed dielectric surfaces. In some embodiments, a method of forming an interconnect structure includes depositing an etch stop layer comprising aluminum atop a substrate via a physical vapor deposition process; and depositing a barrier layer atop the etch stop layer via a chemical vapor deposition process, wherein the substrate is transferred from a physical vapor deposition chamber after depositing the etch stop layer to a chemical vapor deposition chamber without exposing the substrate to atmosphere.
    Type: Application
    Filed: October 4, 2016
    Publication date: April 6, 2017
    Inventors: Sree Rangasai V. KESAPRAGADA, Kevin MORAES, Srinivas GUGGILLA, He REN, Mehul NAIK, David THOMPSON, Weifeng YE, Yana CHENG, Yong CAO, Xianmin TANG, Paul F. MA, Deenesh PADHI
  • Patent number: 9601431
    Abstract: An interconnect structure for use in semiconductor devices and a method for fabricating the same is described. The method includes positioning a substrate in a vacuum processing chamber. The substrate has an exposed copper surface and an exposed low-k dielectric surface. A metal layer is formed over the copper surface but not over the low-k dielectric surface. A metal-based dielectric layer is formed over the metal layer and the low-k dielectric layer.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: March 21, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: He Ren, Mehul B. Naik, Yong Cao, Mei-yee Shek, Yana Cheng, Sree Rangasai V. Kesapragada
  • Publication number: 20170005041
    Abstract: The present disclosure provides an interconnect formed on a substrate and methods for forming the interconnect on the substrate. In one embodiment, the method for forming an interconnect on a substrate includes depositing a barrier layer on the substrate, depositing a transition layer on the barrier layer, and depositing an etch-stop layer on the transition layer, wherein the transition layer shares a common element with the barrier layer, and wherein the transition layer shares a common element with the etch-stop layer.
    Type: Application
    Filed: June 18, 2016
    Publication date: January 5, 2017
    Inventors: He REN, Mehul B. NAIK, Yong CAO, Yana CHENG, Weifeng YE
  • Publication number: 20160372319
    Abstract: In some embodiments a method of processing a substrate disposed atop a substrate support in a physical vapor deposition process chamber includes: (a) depositing a dielectric layer to a first thickness atop a first surface of the substrate via a physical vapor deposition process; (b) providing a first plasma forming gas to a processing region of the physical vapor deposition process chamber, wherein the first plasma forming gas comprises hydrogen but not carbon; (c) providing a first amount of bias power to a substrate support to form a first plasma from the first plasma forming gas within the processing region of the physical vapor deposition process chamber; (d) exposing the dielectric layer to the first plasma; and (e) repeating (a)-(d) to deposit the dielectric film to a final thickness.
    Type: Application
    Filed: June 19, 2015
    Publication date: December 22, 2016
    Inventors: Weimin ZENG, Thanh X. NGUYEN, Yana CHENG, Yong CAO, Daniel Lee DIEHL, Srinivas GUGGILLA, Rongjun WANG, Xianmin TANG
  • Patent number: 9499901
    Abstract: Methods for depositing a layer on a substrate are provided herein. In some embodiments, a method of depositing a metal-containing layer on a substrate in a physical vapor deposition (PVD) chamber may include applying RF power at a VHF frequency to a target comprising a metal disposed in the PVD chamber above the substrate to form a plasma from a plasma-forming gas; optionally applying DC power to the target; sputtering metal atoms from the target using the plasma while maintaining a first pressure in the PVD chamber sufficient to ionize a predominant portion of the sputtered metal atoms; and controlling the potential on the substrate to be the same polarity as the ionized metal atoms to deposit a metal-containing layer on the substrate.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: November 22, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yong Cao, Xianmin Tang, Adolph Miller Allen, Tza-Jing Gung
  • Publication number: 20160319513
    Abstract: A multifunctional all-terrain walking-type hydraulic excavator includes a multifunctional working apparatus (2), a cab (3), a slew assembly (4), a slewing bearing (6), and a walking-type chassis (5). By means of a hydraulic capstan (5.9) arranged at the forward end of the chassis (5), the excavator is able to perform self-rescue and towing assistance. The walking-type chassis (5) adapts to terrain through adjustments of the swing angles of the forward and rear legs (5.2, 5.4, 5.5, 5.6) and thus is able to walk and operate in difficult terrain.
    Type: Application
    Filed: July 11, 2016
    Publication date: November 3, 2016
    Inventors: XIUFENG CHEN, XIAOMING SHI, FENG XUE, JINGKE XU, YUN ZHANG, CHENGPENG GU, JUNQI WU, YONG CAO, RAN GAO, JIE ZHANG, LIPING ZHANG, FUDE WANG, LEI LIU, YUXIANG LIU, YUMING WEI, KAI ZHU, XUEFENG WEI, ZHIHAN PENG, LIANFENG DING, JING HAN, JING LIU
  • Patent number: 9478697
    Abstract: In some embodiments, a substrate carrier for holding a plurality of substrates comprises a disk formed of a continuous material to a nominal dimension which is approximately a multiple of a nominal dimension of a standard substrate size used in the manufacture of light emitting diode devices. In an embodiment, the disk is formed symmetrically about a central axis and defines a substantially planar upper surface. A first pair of pockets is defined in the upper surface of the disk, wherein the disk and each of the first pair of pockets are bisected by a first reference plane passing through the central axis. A second pair of pockets is defined in the upper surface of the disk, wherein the disk and each of the second pair of pockets are bisected by a second reference plane passing through the central axis.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: October 25, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sriskantharajah Thirunavukarasu, Mingwei Zhu, Karthik Elumalai, Thean Ming Tan, Yong Cao, Daniel Lee Diehl, Nag Patibandla
  • Patent number: 9478421
    Abstract: The embodiments herein provides methods for forming a PVD silicon oxide or silicon rich oxide, or PVD SiN or silicon rich SiN, or SiC or silicon rich SiC, or combination of the preceding including a variation which includes controlled doping of hydrogen into the compounds heretofore referred to as SiOxNyCz:Hw, where w, x, y, and z can vary in concentration from 0% to 100%, is produced as a hardmask with optical properties that are substantially matched to the photo-resists at the exposure wavelength. Thus making the hardmask optically planarized with respect to the photo-resist. This allows for multiple sequences of litho and etches in the hardmask while the photo-resist maintains essentially no optical topography or reflectivity variations.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: October 25, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Christopher Dennis Bencher, Daniel Lee Diehl, Huixiong Dai, Yong Cao, Tingjun Xu, Weimin Zeng, Peng Xie
  • Publication number: 20160240483
    Abstract: Interconnect structures and methods of formation of such interconnect structures are provided herein. In some embodiments, a method of forming an interconnect includes: depositing a silicon-aluminum oxynitride (SiAlON) layer atop a first layer of a substrate, wherein the first layer comprises a first feature filled with a first conductive material; depositing a dielectric layer over the silicon-aluminum oxynitride (SiAlON) layer; and forming a second feature in the dielectric layer and the silicon-aluminum oxynitride (SiAlON) layer to expose the first conductive material.
    Type: Application
    Filed: February 11, 2016
    Publication date: August 18, 2016
    Inventors: YANA CHENG, YONG CAO, SRINIVAS GUGGILLA, SREE RANGASAI KESAPRAGADA, XIANMIN TANG, DEENESH PADHI
  • Publication number: 20160220923
    Abstract: A multifunctional continuous phase transition extraction apparatus comprises an extraction system, a desorption system and a solvent recovery system. The extraction system comprises a first heat exchanger and an extraction tank. The desorption system comprises a second heat exchanger, a first desorption tank, a second desorption tank, a first purification column and a second purification column. The solvent recovery system comprises a first condenser, a second condenser, a first solvent tank and a second solvent tank. Two extraction loops can be formed in the present invention. During the overall extraction process, the phase transition process of the extracting agent is real-time and continuous. The extracting agent goes through continuous phase-transitions and is cyclically re-used. The overall process is operated in an airtight and low-pressure condition, and is multifunctional, safe, reliable, and suitable for the extraction for most natural products.
    Type: Application
    Filed: July 11, 2014
    Publication date: August 4, 2016
    Inventor: Yong CAO
  • Publication number: 20160224704
    Abstract: The present invention provides a data processing method, including: acquiring historical data, where the historical data belongs to a first level and a second level, and data corresponding to the first level comprises data corresponding to the second level; generating, from the historical data, a first-granularity data set according to a first granularity, and generating, from the historical data, a second-granularity data set according to a second granularity, where the first granularity and the second granularity respectively correspond to the first level and the second level; performing modeling for a second-granularity forecasting model according to the first-granularity data set and the second-granularity data set; and performing forecasting by using the second-granularity forecasting model to obtain second-granularity forecast data. The present invention enables obtained forecast data of different granularities to be consistent.
    Type: Application
    Filed: February 2, 2016
    Publication date: August 4, 2016
    Inventors: Yijun LIU, Guangjian TIAN, Yong CAO
  • Publication number: 20160133781
    Abstract: In some embodiments, a substrate carrier for holding a plurality of substrates comprises a disk formed of a continuous material to a nominal dimension which is approximately a multiple of a nominal dimension of a standard substrate size used in the manufacture of light emitting diode devices. In an embodiment, the disk is formed symmetrically about a central axis and defines a substantially planar upper surface. A first pair of pockets is defined in the upper surface of the disk, wherein the disk and each of the first pair of pockets are bisected by a first reference plane passing through the central axis. A second pair of pockets is defined in the upper surface of the disk, wherein the disk and each of the second pair of pockets are bisected by a second reference plane passing through the central axis.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 12, 2016
    Inventors: SRISKANTHARAJAH THIRUNAVUKARASU, Mingwei Zhu, Karthik Elumalai, Thean Ming Tan, Yong Cao, Daniel Lee Diehl, Nag Patibandla
  • Patent number: 9299605
    Abstract: Methods for forming a passivation protection structure on a metal line layer formed in an insulating material in an interconnection structure are provided. In one embodiment, a method for forming passivation protection on a metal line in an interconnection structure for semiconductor devices includes selectively forming a metal capping layer on a metal line bounded by a dielectric bulk insulating layer in an interconnection structure formed on a substrate in a processing chamber incorporated in a multi-chamber processing system, in-situ forming a barrier layer on the substrate in the processing chamber; wherein the barrier layer is a metal dielectric layer, and forming a dielectric capping layer on the barrier layer in the multi-chamber processing system.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: March 29, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: He Ren, Mehul B. Naik, Yong Cao, Sree Rangasai V. Kesapragada, Mei-Yee Shek, Yana Cheng