Patents by Inventor Yong Seung Kim

Yong Seung Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8674156
    Abstract: A method of producing a mixed manganese ferrite catalyst, and a method of preparing 1,3-butadiene using the mixed manganese ferrite catalyst. Specifically, a method of producing a mixed manganese ferrite catalyst through a coprecipitation method which is performed at a temperature of 10˜40° C., and a method of preparing 1,3-butadiene using the mixed manganese ferrite catalyst through an oxidative dehydrogenation reaction, in which a C4 mixture containing n-butene, n-butane and other impurities is directly used as reactants without performing additional n-butane separation process or n-butene extraction. 1,3-butadiene can be prepared directly using a C4 mixture including n-butane at a high concentration as a reactant through an oxidative hydrogenation reaction without performing an additional n-butane separation process, and 1,3-butadiene, having high activity, can be also obtained in high yield for a long period of time.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: March 18, 2014
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co. Ltd.
    Inventors: Young Min Chung, Yong Tak Kwon, Tae Jin Kim, Seong Jun Lee, Min Su Ko, Seung Hoon Oh, Yong Seung Kim, In Kyu Song
  • Publication number: 20130267744
    Abstract: This invention relates to a method of producing aromatics and light paraffins from hydrocarbonaceous oils derived from oil, coal or wood, including partially saturating and hydrocracking the oils derived from oil in a hydrogenation and reaction area, separating them depending on the number of carbons, recirculating heavy oils having 11 or more carbons to the hydrogenation and reaction area, feeding oils suitable for producing BTX to an aromatic separation process and a transalkylation process to recover aromatics, and feeding hydrocarbonaceous components having 5 or fewer carbons to a light separation process, thus obtaining light paraffins.
    Type: Application
    Filed: October 20, 2011
    Publication date: October 10, 2013
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Hong Chan Kim, Yong Seung Kim, Sang Hun Oh, Hyuck Jae Lee, Jae Suk Koh, Gyung Rok Kim, Myoung Han Noh, Sang Il Lee, Seung Woo Lee, Do Woan Kim, Jae Hyun Koh, Jong Hyung Lee, Sun Choi, Seung Hoon Oh, Kyung Jong Oh
  • Publication number: 20130253242
    Abstract: The present invention relates to a method for manufacturing aromatic products (benzene/toluene/xylene) and olefinic products from an aromatic-compound-containing oil fraction, whereby it is possible to substitute naphtha as a feedstock for aromatic production and so make stable supply and demand, and it is possible to substantially increase the yield of high-added-value olefinic and high-added-value aromatic components, by providing a method for manufacturing olefinic and aromatic products from light cycle oil comprising a hydrogen-processing reaction step, a catalytic cracking step, an separation step and a transalkylation step, and optionally also comprising a recirculation step.
    Type: Application
    Filed: November 25, 2010
    Publication date: September 26, 2013
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Hong Chan Kim, Sung Won Kim, Yong Seung Kim, Sang Hun Oh, Soo Kil Kang, Hyuck Jae Lee, Cheol Joong Kim, Gyung Rok Kim, Sun Choi, Sam Ryong Park
  • Patent number: 8513479
    Abstract: The present invention relates to a zinc ferrite catalyst, a method of producing the same, and a method of preparing 1,3-butadiene using the same. Specifically, the present invention relates to a zinc ferrite catalyst which is produced in a pH-adjusted solution using a coprecipitation method, a method of producing the same, and a method of preparing 1,3-butadiene using the same, in which the 1,3-butadiene can be prepared directly using a C4 mixture including n-butene and n-butane through an oxidative dehydrogenation reaction. The present invention is advantageous in that 1,3-butadiene can be obtained at a high yield directly using a C4 fraction without performing an additional process for separating n-butene, as a reactant, from a C4 fraction containing impurities.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: August 20, 2013
    Assignees: SK Global Chemical Co., Ltd, SK Innovation Co., Ltd.
    Inventors: Young Min Chung, Seong Jun Lee, Tae Jin Kim, Seung Hoon Oh, Yong Seung Kim, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee
  • Publication number: 20130210611
    Abstract: This invention relates to a hydrocracking catalyst for preparing valuable light aromatic hydrocarbons from polycyclic aromatic hydrocarbons derived from oil, which includes (i) beta-zeolite, (ii) pseudo-boehmite, and (iii) one or more metals selected from among metals of Groups VIII and VIB, and which further includes a cocatalyst component, thereby producing a maximum amount of BTX (Benzene, Toluene, Xylene) from LCO (Light Cycle Oil).
    Type: Application
    Filed: October 21, 2011
    Publication date: August 15, 2013
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Do Woan Kim, Jae Hyun Koh, Sang II Lee, Seung Woo Lee, Seung Hoon Oh, Jae Suk Koh, Yong Seung Kim, Gyung Rok Kim, Sun Choi, Hong Chan Kim, Sang Hun Oh
  • Publication number: 20130178673
    Abstract: This invention relates to a method of producing aromatics and olefins from oils derived from coal or wood, including partially saturating and cracking the oils derived from coal or wood in a hydrogenation & reaction area, separating them depending on the number of carbons, recirculating heavy oils having 11 or more carbons to the hydrogenation & reaction area, feeding oils suitable for producing BTX to an aromatic separation process and a transalkylation process to recover aromatics, and feeding hydrocarbonaceous components having 5 or less carbons to a light separation process, thus obtaining olefins.
    Type: Application
    Filed: September 15, 2011
    Publication date: July 11, 2013
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Hong Chan Kim, Yong Seung Kim, Sung Won Kim, Sang Hun Oh, Hyuck Jae Lee, Dae Hyun Choo, Cheol Joong Kim, Gyung Rok Kim, Myoung Han Noh, Jae Suk Koh, Hyun Chul Choi, Eun Kyoung Kim, Yoon Kyung Lee, Jong Hyung Lee, Sun Choi, Seung Hoon Oh, Jae Hyun Koh, Sang Il Lee, Seung Woo Lee
  • Publication number: 20130087095
    Abstract: A self-gettering differential pump for a molecular beam epitaxy system has a collimator with a length greater than its diameter mounted in front of a source in extended port geometry, wherein the reactant delivered by the source also serves as a gettering agent.
    Type: Application
    Filed: April 16, 2012
    Publication date: April 11, 2013
    Applicant: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Seongshik Oh, Yong-Seung Kim
  • Patent number: 8410328
    Abstract: A method of preparing multicomponent bismuth molybdate catalysts composed of four metal components and a method of preparing 1,3-butadiene using the catalyst, and particularly, to multicomponent bismuth molybdate catalysts composed of a divalent cationic metal, a trivalent cationic metal, bismuth and molybdenum, a preparation method thereof, and a method of preparing 1,3-butadiene from a C4 mixture including n-butene and n-butane using oxidative dehydrogenation are described.
    Type: Grant
    Filed: August 24, 2008
    Date of Patent: April 2, 2013
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co., Ltd.
    Inventors: Young Min Chung, Tae Jin Kim, Seong Jun Lee, Yong Seung Kim, Seung Hoon Oh, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee
  • Patent number: 8367885
    Abstract: This invention relates to a method of preparing a multicomponent bismuth molybdate catalyst by changing the pH of a coprecipitation solution upon coprecipitation and a method of preparing 1,3-butadiene using the catalyst. The multicomponent bismuth molybdate catalyst, coprecipitated using a solution having an adjusted pH, the preparation method thereof, and the method of preparing 1,3-butadiene through oxidative dehydrogenation using a C4 mixture including n-butene and n-butane as a reactant are provided. The C4 raffinate, containing many impurities, is directly used as a reactant without an additional process for separating n-butane or extracting n-butene, thus obtaining 1,3-butadiene at high yield. The activity of the multicomponent bismuth molybdate catalyst can be simply increased through precise pH adjustment upon coprecipitation, which is not disclosed in the conventional techniques.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: February 5, 2013
    Assignees: SK Innovation Co., Ltd, SK Global Chemical Co., Ltd.
    Inventors: Young Min Chung, Seong Jun Lee, Tae Jin Kim, Seung Hoon Oh, Yong Seung Kim, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee
  • Patent number: 8293961
    Abstract: Disclosed is a catalytic cracking process for the production of light olefins from a hydrocarbon feedstock using fast fluidization, which is a preferred process for more efficiently increasing the production of light olefin hydrocarbons. According to this invention, a fast fluidization regime is applied to a fluidized bed catalytic cracking process of producing light olefins using zeolite, such that a volume fraction and distribution of the catalyst sufficient to induce the catalytic cracking reaction can be provided, thus effectively enhancing the production of light olefin hydrocarbons, in particular, ethylene and propylene, at high selectivity.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: October 23, 2012
    Assignee: SK Innovation Co., Ltd.
    Inventors: Sun Choi, Yong Seung Kim, Deuk Soo Park, Suk Joon Kim, Ji Min Kim, Hong Chan Kim, Seung Hoon Oh, Tae-Jin Kim, Dae Hyun Choo
  • Patent number: 8222472
    Abstract: A method of producing 1,3-butadiene by the oxidative dehydrogenation of n-butene using a continuous-flow dual-bed reactor designed such that two kinds of catalysts charged in a fixed-bed reactor are not physically mixed. More particularly, a method of producing 1,3-butadiene by the oxidative dehydrogenation of n-butene using a C4 mixture including n-butene and n-butane as reactants and using a continuous-flow dual-bed reactor in which a multi-component bismuth molybdate catalyst and a zinc ferrite catalyst having different reaction activity in the oxidative dehydrogenation reaction of n-butene isomers (1-butene, trans-2-butene, cis-2-butene).
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: July 17, 2012
    Assignees: SK Innovation Co., Ltd., SNU R&DB Foundation
    Inventors: Young Min Chung, Yong Tak Kwon, Tae Jin Kim, Seong Jun Lee, Yong Seung Kim, Seung Hoon Oh, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee
  • Publication number: 20110288354
    Abstract: This invention relates to a petroleum refining method for producing high value-added clean petroleum products and aromatics (Benzene/Toluene/Xylene) together, by which low pollution petroleum products including liquefied petroleum gas or low-sulfur gas oil and aromatics can be efficiently produced together from a fluid catalytic cracked oil fraction.
    Type: Application
    Filed: November 26, 2008
    Publication date: November 24, 2011
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Cheol Joong Kim, Jae Wook Ryu, Kyeong Hak Seong, Byoung Mu Chang, Byeung Soo Lim, Jong Hyung Lee, Kyung Seok Noh, Hyuck Jae Lee, Sam Ryong Park, Sun Choi, Seung Hoon Oh, Yong Seung Kim, Gyung Rok Kim
  • Patent number: 7939702
    Abstract: Disclosed is a process for increasing production of light olefinic hydrocarbons from hydrocarbon feedstock by catalytic cracking. In the process, an effective separation process structure and recycle method of light olefins are used not only to increase the productivity and efficiency of an overall process, thus effectively increasing the production of light olefins, but also to simplify the overall process.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: May 10, 2011
    Assignee: SK Energy Co., Ltd.
    Inventors: Sun Choi, Yong Seung Kim, Deuk Soo Park, Suk Joon Kim, Il Mo Yang
  • Publication number: 20110004041
    Abstract: A method of producing 1,3-butadiene by the oxidative dehydrogenation of n-butene using a continuous-flow dual-bed reactor designed such that two kinds of catalysts charged in a fixed-bed reactor are not physically mixed. More particularly, a method of producing 1,3-butadiene by the oxidative dehydrogenation of n-butene using a C4 mixture including n-butene and n-butane as reactants and using a continuous-flow dual-bed reactor in which a multi-component bismuth molybdate catalyst and a zinc ferrite catalyst having different reaction activity in the oxidative dehydrogenation reaction of n-butene isomers (1-butene, trans-2-butene, cis-2-butene).
    Type: Application
    Filed: February 9, 2009
    Publication date: January 6, 2011
    Applicants: SK ENERGY CO., LTD., SNU R&DB FOUNDATION
    Inventors: Young Min Chung, Yong Tak Kwon, Tae Jin Kim, Seong Jun Lee, Yong Seung Kim, Seung Hoon Oh, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee
  • Publication number: 20100280300
    Abstract: A method of producing a mixed manganese ferrite catalyst, and a method of preparing 1,3-butadiene using the mixed manganese ferrite catalyst. Specifically, a method of producing a mixed manganese ferrite catalyst through a coprecipitation method which is performed at a temperature of 10˜40° C., and a method of preparing 1,3-butadiene using the mixed manganese ferrite catalyst through an oxidative dehydrogenation reaction, in which a C4 mixture containing n-butene, n-butane and other impurities is directly used as reactants without performing additional n-butane separation process or n-butene extraction. 1,3-butadiene can be prepared directly using a C4 mixture including n-butane at a high concentration as a reactant through an oxidative hydrogenation reaction without performing an additional n-butane separation process, and 1,3-butadiene, having high activity, can be also obtained in high yield for a long period of time.
    Type: Application
    Filed: November 7, 2008
    Publication date: November 4, 2010
    Applicant: SK ENERGY CO., LTD
    Inventors: Young Min Chung, Yong Tak Kwon, Tae Jin Kim, Seong Jun Lee, Min Su Ko, Seung Hoon Oh, Yong Seung Kim, In Kyu Song
  • Publication number: 20100249482
    Abstract: This invention relates to a method of preparing multicomponent bismuth molybdate catalysts composed of four metal components and a method of preparing 1,3-butadiene using the catalyst, and particularly, to multicomponent bismuth molybdate catalysts composed of a divalent cationic metal, a trivalent cationic metal, bismuth and molybdenum, a preparation method thereof, and a method of preparing 1,3-butadiene from a C4 mixture including n-butene and n-butane using oxidative dehydrogenation. According to this invention, it is possible to prepare catalysts having high activity for the preparation process of 1,3-butadiene only using four metal components as shown through systematic investigation of types and ratios of metal components, unlike conventional multicomponent metal oxide catalysts having a complicated composition of metal components.
    Type: Application
    Filed: August 24, 2008
    Publication date: September 30, 2010
    Inventors: Young Min Chung, Tac Jin Kim, Seong Jun Lee, Yong Seung Kim, Seung Hoon Oh, In Kyu Song, Hee soo Kim, Ji Chul Jung, Ho Won Lee
  • Publication number: 20100137664
    Abstract: Disclosed is a method of recovering 1,3-butadiene from a C4 stream containing butane, isobutane, 2-butene, 1-butene, isobutene, butadiene and acetylene. The process of recovering highly pure 1,3-butadiene includes acetylene conversion for selectively converting acetylene through liquid-phase hydrogenation, so that the acetylene content is decreased to 70 wt ppm or less, and 1,3-butadiene extraction using an extractive distillation column, a pre-separator, a solvent stripping column, a solvent recovery column, and a purification column. Through the acetylene conversion, the concentration of vinylacetylene is decreased to 70 wt ppm or less, after which 1,3-butadiene is recovered using only one extractive distillation column, thereby considerably decreasing the degree of utility and the loss of streams in the course of extraction. The number of units necessary for the process is decreased, thus remarkably reducing the time during which impurities can accumulate in a processing unit.
    Type: Application
    Filed: July 18, 2008
    Publication date: June 3, 2010
    Inventors: Hee Du Lee, Kyung Jong Oh, Min Su Ko, Min Gyoo Park, Seong Jun Lee, Yoon Jae Yim, Seung Hoon Oh, Tae Jin Kim, Yong Seung Kim, Deuk Soo Park, Hong Chan Kim
  • Publication number: 20100125161
    Abstract: This invention relates to a method of preparing a multicomponent bismuth molybdate catalyst by changing the pH of a coprecipitation solution upon coprecipitation and a method of preparing 1,3-butadiene using the catalyst. The multicomponent bismuth molybdate catalyst, coprecipitated using a solution having an adjusted pH, the preparation method thereof, and the method of preparing 1,3-butadiene through oxidative dehydrogenation using a C4 mixture including n-butene and n-butane as a reactant are provided. The C4 raffinate, containing many impurities, is directly used as a reactant without an additional process for separating n-butane or extracting n-butene, thus obtaining 1,3-butadiene at high yield. The activity of the multicomponent bismuth molybdate catalyst can be simply increased through precise pH adjustment upon coprecipitation, which is not disclosed in the conventional techniques.
    Type: Application
    Filed: May 8, 2008
    Publication date: May 20, 2010
    Inventors: Young Min Chung, Seong Jun Lee, Tae Jin Kim, Seung Hoon Oh, Yong Seung Kim, In Kyu Song, Hee Soo Kim, Ho Won Lee
  • Patent number: 7718840
    Abstract: Disclosed is a process for producing light olefins from hydrocarbon feedstock. The process is characterized in that a porous molecular sieve catalyst consisting of a product obtained by evaporating water from a raw material mixture comprising a molecular sieve with a framework of Si—OH—Al— groups, a water-insoluble metal salt, and a phosphate compound, is used to produce light olefins, particularly ethylene and propylene, from hydrocarbon, while maintaining excellent selectivity to light olefins. According to the process, by the use of a specific catalyst with hydrothermal stability, light olefins can be selectively produced in high yield with high selectivity from hydrocarbon feedstock, particularly full-range naphtha. In particular, the process can maintain higher cracking activity than the reaction temperature required in the prior thermal cracking process for the production of light olefins, and thus, can produce light olefins with high selectivity and conversion from hydrocarbon feedstock.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: May 18, 2010
    Assignees: SK Energy Co., Ltd., Korea Research Institute of Chemical Technology
    Inventors: Sun Choi, Yong Seung Kim, Deuk Soo Park, Suk Joon Kim, Il Mo Yang, Hee Young Kim, Yong Ki Park, Chul Wee Lee, Won Choon Choi, Kwang An Ko, Na Young Kang
  • Publication number: 20100121123
    Abstract: The present invention relates to a zinc ferrite catalyst, a method of producing the same, and a method of preparing 1,3-butadiene using the same. Specifically, the present invention relates to a zinc ferrite catalyst which is produced in a pH-adjusted solution using a coprecipitation method, a method of producing the same, and a method of preparing 1,3-butadiene using the same, in which the 1,3-butadiene can be prepared directly using a C4 mixture including n-butene and n-butane through an oxidative dehydrogenation reaction. The present invention is advantageous in that 1,3-butadiene can be obtained at a high yield directly using a C4 fraction without performing an additional process for separating n-butene, as a reactant, from a C4 fraction containing impurities.
    Type: Application
    Filed: May 8, 2008
    Publication date: May 13, 2010
    Inventors: Young Min Chung, Seong Jun Lee, Tae Jin Kim, Seung Hoon Oh, Yong Seung Kim, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee