Patents by Inventor Yoshiharu Hasegawa

Yoshiharu Hasegawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240123745
    Abstract: A liquid discharge apparatus includes: a discharge head including nozzles; a head scanning mechanism that reciprocatingly moves the discharge head in a main scanning direction; a conveyer that conveys a recording medium in a sub-scanning direction; and a controller. In one pass, the controller executes: recording processing in which an image is formed on the recording medium by moving the discharge head in the main scanning direction and discharging liquid from the discharge head; setting processing in which the discharge head moves to a starting position of the recording processing for a subsequent pass following the one pass by changing a moving direction of the discharge head at a standstill position; and conveyance processing in which the recording medium is conveyed in the sub-scanning direction.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 18, 2024
    Inventors: Yoshiharu FURUHATA, Shin HASEGAWA
  • Patent number: 7989087
    Abstract: A brazing fin material for heat exchangers includes a core material and a filler metal clad on each side of the core material, wherein the core material is an aluminum alloy including manganese, the filler metal is an aluminum alloy including 6 to 9.5 mass % of silicon, silicon particles in the filler metal have an average circle equivalent diameter of 3 ?m or less, and the brazing fin material has a thickness of 0.06 mm or less.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: August 2, 2011
    Assignees: Sumitomo Light Metal Industries, Denso Corporation
    Inventors: Yuji Suzuki, Yuji Hisatomi, Yoshiharu Hasegawa, Taketoshi Toyama, Masahiro Shimoya
  • Publication number: 20110114228
    Abstract: An aluminum alloy extruded product exhibiting excellent surface properties, contains 0.8 to 1.6% of Mn and 0.4 to 0.8% of Si at a ratio of Mn content to Si content (Mn %/Si %) of 0.7 to 2.4, with the balance being Al and inevitable impurities, the number of intermetallic compounds with a diameter (circle equivalent diameter) of 0.1 to 0.9 ?m dispersed in a matrix being 2×105 or more per square millimeter. The aluminum alloy extruded product allows extrusion of a thin multi-port tube at a high limiting extrusion rate, prevents deposits from adhering to the surface of the extruded tube, and may be suitably used as a constituent member for an aluminum alloy automotive heat exchanger.
    Type: Application
    Filed: January 18, 2011
    Publication date: May 19, 2011
    Inventors: Tomohiko Nakamura, Masaaki Kawakubo, Yoshiharu Hasegawa, Naoki Yamashita, Tatsuya Hikida
  • Patent number: 7767042
    Abstract: A high-strength aluminum alloy extruded product for heat exchangers which excels in extrudability, allows a thin flat multi-cavity tube to be extruded at a high critical extrusion rate, and excels in intergranular corrosion resistance at a high temperature, and a method of manufacturing the same. The aluminum alloy extruded product includes an aluminum alloy including 0.2 to 1.8% of Mn and 0.1 to 1.2% of Si, having a ratio of Mn content to Si content (Mn %/Si %) of 0.7 to 2.5, and having a content of Cu as an impurity of 0.05% or less, with the balance being Al and impurities, the aluminum alloy extruded product having an electric conductivity of 50% IACS or more and an average particle size of intermetallic compounds precipitating in a matrix of 1 ?m or less.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: August 3, 2010
    Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Yoshiharu Hasegawa, Tomohiko Nakamura, Masaaki Kawakubo, Naoki Yamashita, Tatsuya Hikida
  • Patent number: 7534309
    Abstract: An aqueous aluminum brazing composition containing an organic binder and a zinc-based flux which prevents the precipitation of the zinc-based flux having a large specific gravity while securing an excellent brazeability. The thixotropic index of the brazing composition is adjusted to 1.01-1.20 by adding a (meth)acrylic acid/(meth)acrylate copolymer emulsion to the brazing composition as a precipitation inhibitor in an amount of 0.03-1.50 wt % of 100 wt % of the brazing composition. Since the (meth)acrylic acid/(meth)acrylate copolymer emulsion is used as the precipitation inhibitor in a specific amount instead of other types of compounds used for a powder-containing paint, such as ultrafine particle silica, poly(meth)acrylate, or polyvinyl alcohol, the precipitation of the zinc-based flux can be prevented without impairing the brazeability.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: May 19, 2009
    Assignees: Sumitomo Light Metal Industries, Ltd., Harima Chemicals, Inc.
    Inventors: Taketoshi Toyama, Ryoichi Sanada, Takashi Hatori, Yoshiharu Hasegawa, Yuji Hisatomi, Ichiro Taninaka
  • Publication number: 20080003451
    Abstract: A brazing fin material for heat exchangers includes a core material and a filler metal clad on each side of the core material, wherein the core material is an aluminum alloy including manganese, the filler metal is an aluminum alloy including 6 to 9.5 mass % of silicon, silicon particles in the filler metal have an average circle equivalent diameter of 3 ?m or less, and the brazing fin material has a thickness of 0.06 mm or less.
    Type: Application
    Filed: June 18, 2007
    Publication date: January 3, 2008
    Applicants: SUMITOMO LIGHT METAL INDUSTRIES, LTD., DENSO CORPORATION
    Inventors: Yuji SUZUKI, Yuji HISATOMI, Yoshiharu HASEGAWA, Taketoshi TOYAMA, Masahiro SHIMOYA
  • Patent number: 7250223
    Abstract: The present invention provides a heat exchanger which is assembled by brazing an aluminum fin material to the outer surface of an aluminum tube material formed by bending a sheet material, in particular, an aluminum heat exchanger which can be suitably used as an automotive heat exchanger such as a condenser or evaporator. The tube material is formed of a two-layer clad sheet which includes a core material and an Al—Zn alloy layer clad on the core material. The Al—Zn alloy layer is clad on the outer surface of the tube material and brazed to the aluminum fin material. The potential of the Al—Zn alloy layer in a normal corrosive solution is at least 100 mV lower than the potential of the core material in the normal corrosive solution. The potential of the Al—Zn alloy layer in the normal corrosive solution is lower than the potential of the core material in high-concentration corrosive water. The normal corrosive solution refers to an aqueous solution containing 10 g/l of NaCl and 0.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: July 31, 2007
    Assignees: DENSO Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Haruhiko Miyachi, Yoshiharu Hasegawa, Masamichi Makihara, Yasunaga Itoh, Naoki Yamashita, Toshihiko Fukuda
  • Patent number: 7211160
    Abstract: An aluminum alloy piping material for automotive tubes having excellent tube expansion formability by bulge forming at the tube end and superior corrosion resistance, which is suitably used for a tube connecting an automotive radiator and heater, or for a tube connecting an evaporator, condenser, and compressor. The aluminum alloy piping material is an annealed material of an aluminum alloy containing 0.3 to 1.5% of Mn, 0.20% or less of Cu, 0.10 to 0.20% of Ti, more than 0.20% but 0.60% or less of Fe, and 0.50% or less of Si with the balance being aluminum and unavoidable impurities, wherein the aluminum alloy piping material has an average crystal grain size of 100 ?m or less, and Ti-based compounds having a grain size (circle equivalent diameter, hereinafter the same) of 10 ?m or more do not exist as an aggregate of two or more serial compounds in a single crystal grain.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: May 1, 2007
    Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Yoshiharu Hasegawa, Haruhiko Miyachi, Takahiro Koyama, Yoshifusa Shoji
  • Patent number: 7168756
    Abstract: A vehicle front pillar construction has a hollow member formed integrally to have a closed cross section, having a front supporting a windshield and a pair of sides whose width direction coincides with a direction which follows the line of sight of a driver, a door seal mounted on the side of the hollow member which is situated spaced away from the front and an outer member mounted on the front of the hollow member in such a manner as to cover the hollow member from the door seal to the windshield.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: January 30, 2007
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshiharu Hasegawa, Kazumi Kodama, Kosaku Tomozawa, Shuhei Hamada
  • Publication number: 20070017605
    Abstract: An aluminum alloy extruded product exhibiting excellent surface properties, comprising 0.8 to 1.6% of Mn and 0.4 to 0.8% of Si at a ratio of Mn content to Si content (Mn %/Si %) of 0.7 to 2.4, with the balance being Al and inevitable impurities, the number of intermetallic compounds with a diameter (circle equivalent diameter) of 0.1 to 0.9 ?m dispersed in a matrix being 2×105 or more per square millimeter. The aluminum alloy extruded product allows extrusion of a thin multi-port tube at a high limiting extrusion rate, prevents deposits from adhering to the surface of the extruded tube, and may be suitably used as a constituent member for an aluminum alloy automotive heat exchanger.
    Type: Application
    Filed: July 20, 2006
    Publication date: January 25, 2007
    Inventors: Tomohiko Nakamura, Masaaki Kawakubo, Yoshiharu Hasegawa, Naoki Yamashita, Tatsuya Hikida
  • Publication number: 20060138807
    Abstract: A vehicle front pillar construction has a hollow member formed integrally to have a closed cross section, having a front supporting a windshield and a pair of sides whose width direction coincides with a direction which follows the line of sight of a driver, a door seal mounted on the side of the hollow member which is situated spaced away from the front and an outer member mounted on the front of the hollow member in such a manner as to cover the hollow member from the door seal to the windshield.
    Type: Application
    Filed: December 9, 2005
    Publication date: June 29, 2006
    Applicant: Honda Motor Co., Ltd.
    Inventors: Yoshiharu Hasegawa, Kazumi Kodama, Kosaku Tomozawa, Shuhei Hamada
  • Publication number: 20060102328
    Abstract: A sheet material for the tube 10 includes: a core material 10b; and a sacrifical corrosion material 10c clad on one face of the core material 10b which becomes an outside of the tube 10. A sheet material for the fin is a bare aluminum material on which a brazing filler metal is not clad. A mixture composition 10e, in which powder of a brazing filler metal and flux are mixed with each other, is coated on the outside of the tube 10. The tube 10 and the fin are brazed to each other with this mixture composition 10e. Even after the completion of brazing, the sacrifical corrosion material 10c remains on the outside of the tube 10.
    Type: Application
    Filed: November 16, 2005
    Publication date: May 18, 2006
    Applicants: DENSO Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Taketoshi Toyama, Yoshiharu Hasegawa, Naohiro Ohya, Yasunaga Itoh, Yuji Hisatomi, Hirokazu Tanaka
  • Publication number: 20060102691
    Abstract: An aqueous aluminum brazing composition containing an organic binder and zinc-based flux which prevents precipitation of the zinc-based flux having a large specific gravity while securing excellent brazeability. The thixotropic index of the brazing composition is adjusted to 1.01-1.20 by adding (meth)acrylic acid/(meth)acrylate copolymer emulsion to the brazing composition as a precipitation inhibitor in an amount of 0.03-1.50 wt % of 100 wt % of the brazing composition. Since the (meth)acrylic acid/(meth)acrylate copolymer emulsion is used as the precipitation inhibitor in a specific amount instead of other types of compounds used for powder-containing paint such as ultrafine particle silica, poly(meth)acrylate, or polyvinyl alcohol, precipitation of the zinc-based flux can be prevented without impairing brazeability.
    Type: Application
    Filed: June 16, 2003
    Publication date: May 18, 2006
    Inventors: Taketoshi Toyama, Ryoichi Sanada, Yoshiharu Hasegawa, Yuji Hisatomi, Ichiro Taninaka
  • Publication number: 20050189047
    Abstract: A high-strength aluminum alloy extruded product for heat exchangers which excels in extrudability, allows a thin flat multi-cavity tube to be extruded at a high critical extrusion rate, and excel in intergranular corrosion resistance at a high temperature, and a method of manufacturing the same. The aluminum alloy extruded product includes an aluminum alloy including 0.2 to 1.8% of Mn and 0.1 to 1.2% of Si, having a ratio of Mn content to Si content (Mn %/Si %) of 0.7 to 2.5, and having a content of Cu as an impurity of 0.05% or less, with the balance being Al and impurities, the aluminum alloy extruded product having an electric conductivity of 50% IACS or more and an average particle size of intermetallic compounds precipitating in a matrix of 1 ?m or less.
    Type: Application
    Filed: February 9, 2005
    Publication date: September 1, 2005
    Inventors: Yoshiharu Hasegawa, Tomohiko Nakamura, Masaaki Kawakubo, Naoki Yamashita, Yasunaga Itoh, Tatsuya Hikida
  • Patent number: 6896977
    Abstract: A method of brazing an aluminum or aluminum alloy material, containing brazing an aluminum alloy brazing sheet that has an aluminum or aluminum alloy core material and, being clad on one or both surfaces, a filler alloy layer comprised of an Al—Si-based alloy and contains Mg incorporated at least in a constituent layer except the filler alloy layer, thereby to form a hollow structure whose one surface clad with the filler alloy is the inner surface, wherein the brazing is carried out in an inert gas atmosphere without applying any flux; and an aluminum alloy brazing sheet which satisfies the relationship: (X+Y)?a/60+0.5 and X>Y, wherein a (?m) represents the thickness of the filler alloy layer clad on the core material of the inner side of the hollow structure, and X and Y (mass %) represent the Mg contents of the core material and the brazing material, respectively.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: May 24, 2005
    Assignee: Furukawa-Sky Aluminum CORP
    Inventors: Shinya Nishimura, Yutaka Yanagawa, Takeyoshi Doko, Yoshiharu Hasegawa, Haruhiko Miyachi, Kouji Hirao
  • Patent number: 6849136
    Abstract: An object of the present invention is to provide a filler metal for an aluminum brazing sheet for heat exchangers capable of preventing or controlling occurrence of a melting hole during heating for brazing, and a method of manufacturing the same. In an Al—Si alloy filler metal which is clad on the aluminum brazing sheet and melted during heating for brazing, the maximum particle diameter of a coarse Si particle crystallized in the eutectic structure of the filler metal is 20 ?m or less. Provided that an average value and a standard deviation in a normal distribution of the particle diameter of the coarse Si particle in the filler metal are respectively ? and ?, (?+3?) is preferably 10 ?m or less. This brazing sheet is obtained by a method of adding a specific amount of Na, Sr, or Sb to the filler metal, a method of limiting the amount of impurities in the filler metal within a specific range, a method of specifying a cooling rate during the casting of the filler metal, or the like.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: February 1, 2005
    Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Yoshiharu Hasegawa, Koji Hirao, Hiroshi Nishikawa, Yasunaga Itoh, Naoki Yamashita, Shinichi Tani, Keiichi Sakai, Eiichi Kashima
  • Publication number: 20050011636
    Abstract: The present invention provides a heat exchanger which is assembled by brazing an aluminum fin material to the outer surface of an aluminum tube material formed by bending a sheet material, in particular, an aluminum heat exchanger which can be suitably used as an automotive heat exchanger such as a condenser or evaporator. The tube material is formed of a two-layer clad sheet which includes a core material and an Al—Zn alloy layer clad on the core material. The Al—Zn alloy layer is clad on the outer surface of the tube material and brazed to the aluminum fin material. The potential of the Al—Zn alloy layer in normal corrosive solution is 100 mV or more lower than the potential of the core material in the normal corrosive solution. The potential of the Al—Zn alloy layer in the normal corrosive solution is lower than the potential of the core material in high-concentration corrosive water. The normal corrosive solution refers to an aqueous solution containing 10 g/l of NaCl and 0.
    Type: Application
    Filed: June 3, 2004
    Publication date: January 20, 2005
    Inventors: Haruhiko Miyachi, Yoshiharu Hasegawa, Masamichi Makihara, Yasunaga Itoh, Naoki Yamashita, Toshihiko Fukuda
  • Publication number: 20040238604
    Abstract: A method for brazing a magnesium-containing aluminum alloy material exhibiting excellent brazing performance when applied to brazing an aluminum alloy material containing 0.2-1.0% of magnesium used in cladding parts of vehicle heat exchanger tubes and the like using potassium fluorozincate and an Al—Si-alloy brazing material in an inert gas atmosphere can be provided. The method is characterized by brazing the magnesium-containing aluminum alloy by applying potassium fluorozincate having a composition of KxZnyFz (wherein x, y, and z are positive integers) to the brazing part at a concentration of (1.65×Mg %/T) g/m2 or more (wherein T is an average temperature rising rate (° C./second) of the aluminum alloy from 550° C. to the brazing temperature), and heating at an average temperature rising rate (T) of 0.1° C./second or more.
    Type: Application
    Filed: April 6, 2004
    Publication date: December 2, 2004
    Inventors: Yoshiharu Hasegawa, Haruhiko Miyachi, Naoki Yamashita, Yasunaga Itoh
  • Publication number: 20040238605
    Abstract: A method of brazing an aluminum or aluminum alloy material, containing brazing an aluminum alloy brazing sheet that has an aluminum or aluminum alloy core material and, being clad on one or both surfaces, a filler alloy layer comprised of an Al—Si-based alloy and contains Mg incorporated at least in a constituent layer except the filler alloy layer, thereby to form a hollow structure whose one surface clad with the filler alloy is the inner surface, wherein the brazing is carried out in an inert gas atmosphere without applying any flux; and an aluminum alloy brazing sheet which satisfies the relationship: (X+Y)≦a/60+0.5 and X>Y, wherein a (&mgr;m) represents the thickness of the filler alloy layer clad on the core material of the inner side of the hollow structure, and X and Y (mass %) represent the Mg contents of the core material and the brazing material, respectively.
    Type: Application
    Filed: March 24, 2004
    Publication date: December 2, 2004
    Inventors: Shinya Nishimura, Yutaka Yanagawa, Takeyoshi Doko, Yoshiharu Hasegawa, Haruhiko Miyachi, Kouji Hirao
  • Patent number: 6800345
    Abstract: An aluminum extruded multi-cavity flat tube for use in an automotive heat exchanger having excellent brazing characteristics. At least one of the flat surfaces of said aluminum extruded multi-cavity flat tube is coated with a flux composition comprising a brazing flux and a synthetic resin based, as its main constituent, on a methacrylate homopolymer or a methacrylate copolymer or, alternatively, with a brazing composition comprising a brazing flux, brazing metals, and said synthetic resin. In a preferred embodiment, such a coating is provided by applying to a surface of an aluminum extruded multi-cavity flat tube, said compositions as added to an organic solvent and having a molecular structure wherein the atomic ratio of carbon to oxygen is between 2 and 3, by a roll-transfer printing technique.
    Type: Grant
    Filed: February 18, 1999
    Date of Patent: October 5, 2004
    Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Shoei Teshima, Yoshiharu Hasegawa, Ichiro Taninaka, Tsutomu Usami, Yuji Hisatomi