Patents by Inventor Yu-Chi Wang

Yu-Chi Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11458715
    Abstract: A method for preparing a bifunctional film, including: (a) drying a first polymer solution to form a film to form an anti-adhesion layer; and (b) drying a second polymer solution over the anti-adhesion layer to form a film to form an attachment layer. The first polymer solution includes a first hydrophobic solution and a first hydrophilic solution, and in the first polymer solution, the weight ratio of the solute of the first hydrophobic solution to the solute of the first hydrophilic solution is 1:0.01-1. Moreover, the second polymer solution consists of a second hydrophilic solution.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: October 4, 2022
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hsin-Hsin Shen, Yu-Chi Wang, Ming-Chia Yang, Yu-Bing Liou, Wei-Hong Chang, Yun-Han Lin, Hsin-Yi Hsu, Yun-Chung Teng, Chia-Jung Lu, Yi-Hsuan Lee, Jian-Wei Lin, Kun-Mao Kuo, Ching-Mei Chen
  • Publication number: 20220310794
    Abstract: A semiconductor device includes an epitaxial substrate. The epitaxial substrate includes a substrate. A strain relaxed layer covers and contacts the substrate. A III-V compound stacked layer covers and contacts the strain relaxed layer. The III-V compound stacked layer is a multilayer epitaxial structure formed by aluminum nitride, aluminum gallium nitride or a combination of aluminum nitride and aluminum gallium nitride.
    Type: Application
    Filed: March 3, 2022
    Publication date: September 29, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Ming Hsu, Yu-Chi Wang, Yen-Hsing Chen, Tsung-Mu Yang, Yu-Ren Wang
  • Patent number: 11450787
    Abstract: An optoelectronic semiconductor device includes a semiconductor stack, an electrode, and a plurality of contact portions. The semiconductor stack includes a first type semiconductor structure, an active structure on the first type semiconductor structure, and a second type semiconductor structure on the active structure. The first type semiconductor structure includes a first protrusion part, a second protrusion part and a platform part between the first protrusion part and the second protrusion part. The semiconductor stack includes a thickness. The electrode on the second type semiconductor structure includes a region corresponding to the first protrusion. The contact portions are located at the second protrusion part without being at the first protrusion part. The contact portions are attached to the first type semiconductor structure.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: September 20, 2022
    Assignee: EPISTAR CORPORATION
    Inventors: Chung-Hao Wang, Yu-Chi Wang, Yi-Ming Chen, Yi-Yang Chiu, Chun-Yu Lin
  • Publication number: 20220262942
    Abstract: An HEMT includes an aluminum gallium nitride layer. A gallium nitride layer is disposed below the aluminum gallium nitride layer. A zinc oxide layer is disposed under the gallium nitride layer. A source electrode and a drain electrode are disposed on the aluminum gallium nitride layer. A gate electrode is disposed on the aluminum gallium nitride layer and between the drain electrode and the source electrode.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Ming Hsu, Yu-Chi Wang, Yen-Hsing Chen, Tsung-Mu Yang, Yu-Ren Wang
  • Patent number: 11355626
    Abstract: An HEMT includes an aluminum gallium nitride layer. A gallium nitride layer is disposed below the aluminum gallium nitride layer. A zinc oxide layer is disposed under the gallium nitride layer. A source electrode and a drain electrode are disposed on the aluminum gallium nitride layer. A gate electrode is disposed on the aluminum gallium nitride layer and between the drain electrode and the source electrode.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: June 7, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Ming Hsu, Yu-Chi Wang, Yen-Hsing Chen, Tsung-Mu Yang, Yu-Ren Wang
  • Publication number: 20220096013
    Abstract: The present invention provides a bioinformation measuring device having a first device body, a second device body, and a transducer assembly. The first device body has a first inner surface, and the second device body has a second inner surface facing the first inner surface. An accommodation space for finger is surrounded by the first inner surface and the second inner surface. The transducer assembly is disposed at the second inner surface and includes a finger contact surface facing the first inner surface. The finger contact surface is movable in a first direction perpendicular to the finger contact surface.
    Type: Application
    Filed: December 6, 2021
    Publication date: March 31, 2022
    Applicant: Cardio Ring Technologies, Inc.
    Inventors: Kuang-Fu CHANG, Yu-Chi WANG, Wen-Pin SHIH
  • Patent number: 11257939
    Abstract: A high electron mobility transistor (HEMT) includes a buffer layer on a substrate, in which the buffer layer includes a first buffer layer and a second buffer layer. Preferably, the first buffer layer includes a first layer of the first buffer layer comprising AlyGa1-yN on the substrate and a second layer of the first buffer layer comprising AlxGa1-xN on the first layer of the first buffer layer. The second buffer layer includes a first layer of the second buffer layer comprising AlwGa1-wN on the first buffer layer and a second layer of the second buffer layer comprising AlzGa1-zN on the first layer of the second buffer layer, in which x>z>y>w.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: February 22, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yen-Hsing Chen, Yu-Ming Hsu, Yu-Chi Wang, Tsung-Mu Yang, Yu-Ren Wang
  • Publication number: 20220045173
    Abstract: A semiconductor device includes an epitaxial substrate. The epitaxial substrate includes a substrate. A strain relaxed layer covers and contacts the substrate. A III-V compound stacked layer covers and contacts the strain relaxed layer. The III-V compound stacked layer is a multilayer epitaxial structure formed by aluminum nitride, aluminum gallium nitride or a combination of aluminum nitride and aluminum gallium nitride.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 10, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Ming Hsu, Yu-Chi Wang, Yen-Hsing Chen, Tsung-Mu Yang, Yu-Ren Wang
  • Patent number: 11177379
    Abstract: A gate-sinking pseudomorphic high electron mobility transistor comprises a compound semiconductor substrate overlaid with an epitaxial structure which includes sequentially a buffer layer, a channel layer, a Schottky layer, and a first cap layer. The Schottky layer comprises from bottom to top at least two stacked regions of semiconductor material. Each of the two adjacent stacked regions differs in material from the other and provides a stacked region contact interface therebetween. In any two adjacent stacked regions of the Schottky layer, one stacked region composed of AlGaAs-based semiconductor material alternates with the other stacked region composed of InGaP-based semiconductor material. A gate-sinking region is beneath the first gate metal layer of the gate electrode, and the bottom boundary of the gate-sinking region is located at the one of the at least one stacked region contact interface of the Schottky layer.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: November 16, 2021
    Assignee: WIN SEMICONDUCTORS CORP.
    Inventors: Chia-Ming Chang, Jung-Tao Chung, Chang-Hwang Hua, Ju-Hsien Lin, Yan-Cheng Lin, Yu-Chi Wang
  • Patent number: 11154637
    Abstract: A biodegradable sealant includes: a polyethylene glycol derivative; a photoinitiator; and a solvent, wherein the content of the polyethylene glycol derivative is about 10-75 wt % in the biodegradable sealant. The polyethylene glycol derivative is obtained by a substitution reaction, and in the substitution reaction, the polyethylene glycol is modified with methacrylic anhydride.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: October 26, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hsin-Hsin Shen, Yu-Chi Wang, Sen-Lu Chen, Yu-Bing Liou, Jian-Wei Lin, Yi-Hsuan Lee, Ming-Chia Yang, Ying-Wen Shen, Wei-Lin Yu
  • Publication number: 20210151591
    Abstract: A high electron mobility transistor (HEMT) includes a buffer layer on a substrate, in which the buffer layer includes a first buffer layer and a second buffer layer. Preferably, the first buffer layer includes a first layer of the first buffer layer comprising AlyGa1-yN on the substrate and a second layer of the first buffer layer comprising AlxGa1-xN on the first layer of the first buffer layer. The second buffer layer includes a first layer of the second buffer layer comprising AlwGa1-wN on the first buffer layer and a second layer of the second buffer layer comprising AlzGa1-zN on the first layer of the second buffer layer, in which x>z>y>w.
    Type: Application
    Filed: December 12, 2019
    Publication date: May 20, 2021
    Inventors: Yen-Hsing Chen, Yu-Ming Hsu, Yu-Chi Wang, Tsung-Mu Yang, Yu-Ren Wang
  • Publication number: 20210134957
    Abstract: A semiconductor device includes an epitaxial substrate. The epitaxial substrate includes a substrate. A strain relaxed layer covers and contacts the substrate. A III-V compound stacked layer covers and contacts the strain relaxed layer. The III-V compound stacked layer is a multilayer epitaxial structure formed by aluminum nitride, aluminum gallium nitride or a combination of aluminum nitride and aluminum gallium nitride.
    Type: Application
    Filed: December 10, 2019
    Publication date: May 6, 2021
    Inventors: Yu-Ming Hsu, Yu-Chi Wang, Yen-Hsing Chen, Tsung-Mu Yang, Yu-Ren Wang
  • Publication number: 20210093209
    Abstract: The present invention provides a wearable device for monitoring blood-pressure.
    Type: Application
    Filed: November 30, 2020
    Publication date: April 1, 2021
    Applicant: Cardio Ring Technologies, Inc.
    Inventors: Kuang-Fu CHANG, Yu-Chi WANG, Leng-Chun CHEN, Jun-Ming CHEN, Wen-Pin SHIH
  • Publication number: 20210085606
    Abstract: The disclosure provides a use of hydrogel composition for alleviating degenerative joint and tendon tear. The hydrogel composition includes 100 parts by weight of therapeutic agent and 120-380 parts by weight of biodegradable copolymer, wherein the therapeutic agent comprises platelet-rich plasma (PRP), doxorubicin, transforming growth factor, bovine serum albumin, or a combination thereof. The biodegradable copolymer has a structure of Formula (I) or Formula (II): wherein A is a hydrophilic polyethylene glycol polymer; B is a hydrophobic polyester polymer; BOX is a bifunctional group monomer of 2, 2?-bis(2-oxazoline) used for coupling the blocks A-B or B-A-B; and n is 0 or an integer greater than 0.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Applicant: Industrial Technology Research Institute
    Inventors: Hsin-Hsin SHEN, Wen-Shiang CHEN, Chueh-Hung WU, Ming-Kuan SUN, Yu-Chi WANG, Sen-Lu CHEN, Wei-Lin YU, Lih-Tao HSU, Shih-Ping LIN
  • Publication number: 20210066487
    Abstract: An HEMT includes an aluminum gallium nitride layer. A gallium nitride layer is disposed below the aluminum gallium nitride layer. A zinc oxide layer is disposed under the gallium nitride layer. A source electrode and a drain electrode are disposed on the aluminum gallium nitride layer. A gate electrode is disposed on the aluminum gallium nitride layer and between the drain electrode and the source electrode.
    Type: Application
    Filed: September 18, 2019
    Publication date: March 4, 2021
    Inventors: Yu-Ming Hsu, Yu-Chi Wang, Yen-Hsing Chen, Tsung-Mu Yang, Yu-Ren Wang
  • Publication number: 20210043803
    Abstract: An optoelectronic semiconductor device includes a semiconductor stack, an electrode, and a plurality of contact portions. The semiconductor stack includes a first type semiconductor structure, an active structure on the first type semiconductor structure, and a second type semiconductor structure on the active structure. The first type semiconductor structure includes a first protrusion part, a second protrusion part and a platform part between the first protrusion part and the second protrusion part. The semiconductor stack includes a thickness. The electrode on the second type semiconductor structure includes a region corresponding to the first protrusion. The contact portions are located at the second protrusion part without being at the first protrusion part. The contact portions are attached to the first type semiconductor structure.
    Type: Application
    Filed: August 7, 2020
    Publication date: February 11, 2021
    Inventors: Chung-Hao WANG, Yu-Chi Wang, Yi-Ming Chen, Yi-Yang Chiu, Chun-Yu Lin
  • Publication number: 20210022629
    Abstract: The present invention provides a wearable device for monitoring blood-pressure.
    Type: Application
    Filed: August 10, 2020
    Publication date: January 28, 2021
    Applicant: Cardio Ring Technologies, Inc.
    Inventors: Kuang-Fu CHANG, Yu-Chi WANG, Leng-Chun CHEN, Jun-Ming CHEN, Wen-Pin SHIH
  • Publication number: 20200403091
    Abstract: A gate-sinking pseudomorphic high electron mobility transistor comprises a compound semiconductor substrate overlaid with an epitaxial structure which includes sequentially a buffer layer, a channel layer, a Schottky layer, and a first cap layer. The Schottky layer comprises from bottom to top at least two stacked regions of semiconductor material. Each of the two adjacent stacked regions differs in material from the other and provides a stacked region contact interface therebetween. In any two adjacent stacked regions of the Schottky layer, one stacked region composed of AlGaAs-based semiconductor material alternates with the other stacked region composed of InGaP-based semiconductor material. A gate-sinking region is beneath the first gate metal layer of the gate electrode, and the bottom boundary of the gate-sinking region is located at the one of the at least one stacked region contact interface of the Schottky layer.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 24, 2020
    Inventors: Chia-Ming CHANG, Jung-Tao CHUNG, Chang-Hwang HUA, Ju-Hsien LIN, Yan-Cheng LIN, Yu-Chi WANG
  • Patent number: 10786163
    Abstract: Devices and methods for monitoring blood pressure with a wearable device, which includes a contact member that concentrates radially directed tissue movement produced by arterial motion into a relatively small spot to compress the strain device. This concentration significantly increases the sensitivity of the force detecting device and allows further miniaturization of the device.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: September 29, 2020
    Assignee: Cardio Ring Technologies, Inc.
    Inventors: Kuang-Fu Chang, Yu-Chi Wang, Leng-Chun Chen, Jun-Ming Chen, Wen-Pin Shih
  • Patent number: D919612
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: May 18, 2021
    Assignee: QNAP SYSTEMS, INC.
    Inventor: Yu-Chi Wang