Patents by Inventor Yuji Ogawa

Yuji Ogawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8148590
    Abstract: A process for producing aromatic hydrocarbons and hydrogen, in which a lower hydrocarbons-containing feedstock gas is reformed by being supplied to and being brought into contact with a catalyst under high temperature conditions thereby forming aromatic hydrocarbons and hydrogen. The method includes the steps of (a) supplying a hydrogen gas together with the feedstock gas during a supply of the feedstock gas; and (b) suspending the supply of the feedstock gas for a certain period of time while keeping a condition of a supply of the hydrogen gas. The catalyst is exemplified by a metallo-silicate carrying molybdenum and a metallo-silicate carrying molybdenum and rhodium. An amount of the hydrogen gas supplied together with the feedstock gas is set to be preferably larger than 2% and smaller than 10%, more preferably within a range of from 4 to 8%, much more preferably 8%.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: April 3, 2012
    Assignees: Meidensha Corporation
    Inventors: Masaru Ichikawa, Ryoichi Kojima, Yuji Ogawa, Masamichi Kuramoto
  • Publication number: 20120022309
    Abstract: [Object] To produce aromatic hydrocarbon stably for a long time maintaining a high aromatic hydrocarbon yield when the aromatic hydrocarbon is produced upon making a contact reaction between lower hydrocarbon and a catalyst. [Solving Means] In a method of producing aromatic hydrocarbon, including repeating a reaction step for obtaining aromatic hydrocarbon upon making a contact reaction between lower hydrocarbon and a catalyst and a regeneration step for regenerating the catalyst used in the reaction step, carbon dioxide in an amount of 0.33 to 1.6% by volume relative to an amount of the lower hydrocarbon is added to the lower hydrocarbon, in the reaction step.
    Type: Application
    Filed: January 15, 2010
    Publication date: January 26, 2012
    Inventors: Hongtao Ma, Yuji Ogawa
  • Patent number: 8097763
    Abstract: An aromatic compound, particularly benzene, is stably produced in the presence of a catalyst from a lower hydrocarbon having 2 or more carbon atoms, particularly from an ethane-containing gas composition such as ethane gas and natural gas. Disclosed is a process for producing an aromatic compound by reacting ethane or an ethane-containing raw gas in the presence of a catalyst. The catalyst may comprise molybdenum carried on metallosilicate such as H-type ZSM-5H or H-type MCM-22. In the reaction, the temperature is from 550 to 750° C., preferably not lower than 600° C. and not higher than 680° C. Additionally, the raw gas further contains methane and hydrogen is added thereto, thereby improving the production efficiency and stability.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: January 17, 2012
    Assignees: Meidensha Corporation
    Inventors: Masaru Ichikawa, Ryoichi Kojima, Yuji Ogawa, Masamichi Kuramoto
  • Publication number: 20110288355
    Abstract: To economically regenerate a catalyst and to produce aromatic hydrocarbon stably for a long time maintaining a high aromatic hydrocarbon yield when the aromatic hydrocarbon is produced upon making a contact reaction between lower hydrocarbon and the catalyst. A method of producing aromatic hydrocarbon and an apparatus for producing aromatic hydrocarbon by repeating a reaction step for obtaining aromatic hydrocarbon upon making a contact reaction between lower hydrocarbon and a catalyst and a regeneration step for regenerating the catalyst used in the reaction step. Off-gas which is gas obtained by removing aromatic hydrocarbon produced in the reaction step from discharge gas passing through the reaction step is used as a regeneration gas in the regeneration step.
    Type: Application
    Filed: January 15, 2010
    Publication date: November 24, 2011
    Applicant: MEIDENSHA CORPORATION
    Inventors: Yuji Ogawa, Hongtao Ma
  • Patent number: 8064062
    Abstract: A photometric apparatus and an automatic analyzer in which liquid samples contained in vessels are measured with light of different wavelengths while the vessels are transferred are provided. A photometric apparatus includes light sources that are arranged in the movement direction of a vessel and emit light of different wavelengths, light-receiving devices that are located opposing the light sources with the vessels interposed inbetween and receive light of different wavelengths emitted from the light sources. The arrangement length of light sources along the movement direction of the vessels is shorter than the arrangement pitch of the vessels.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: November 22, 2011
    Assignee: Beckman Coulter, Inc.
    Inventor: Yuji Ogawa
  • Publication number: 20110172089
    Abstract: [Task] To improve activity of a lower hydrocarbon aromatization catalyst and the catalyst stability. [Solving Means] In a method for producing a lower hydrocarbon aromatization catalyst to produce an aromatic compound by a catalytic reaction using a lower hydrocarbon as a raw material, the catalyst includes a metallosilicate on which molybdenum is supported, a silane in 0.75 weight % or more relative to the metallosilicate component is supported, and the catalyst is prepared by conducting a compressive shaping without adding an inorganic binder that binds particles of the catalyst. As a result, the lower hydrocarbon aromatization catalyst maintains a sufficient shape-retaining property even by a compressive shaping in a binderless manner. Stability of the catalyst and activity of the catalyst improve by subjecting the lower hydrocarbon aromatization catalyst to a compressive shaping in a binderless manner. Its advantageous effect is conspicuous when the amount of addition in terms of silicon oxide is 0.
    Type: Application
    Filed: September 29, 2009
    Publication date: July 14, 2011
    Inventor: Yuji Ogawa
  • Publication number: 20110172478
    Abstract: [Object] To improve the yield of aromatic hydrocarbon and the stability of active life in a process for producing aromatic compound by using a lower hydrocarbon aromatization catalyst. [Solving Means] A lower hydrocarbon aromatization catalyst for producing aromatic compound under reaction of lower hydrocarbon has an average crystal diameter of not larger than 500 nm. A catalyst in which molybdenum is carried on ZSM-5 zeolite as metallosilicate is used as an example of the above-mentioned catalyst. Additionally, a process for producing aromatic compound upon contact of the above-mentioned catalyst with a reaction gas containing lower hydrocarbon is provided.
    Type: Application
    Filed: June 18, 2009
    Publication date: July 14, 2011
    Inventors: Hongtao Ma, Yuji Ogawa
  • Publication number: 20100137125
    Abstract: To improve stability of catalytic performance, an aromatizing catalyst for converting lower hydrocarbons into aromatic compounds is regenerated. A regeneration process of the aromatizing catalyst according to the present invention includes the steps of: (a) reacting the aromatizing catalyst with a hydrogen gas in an atmosphere containing the hydrogen gas after using the aromatizing catalyst in an aromatizing reaction for converting lower hydrocarbons into aromatic compounds; (b) decreasing a temperature of the atmosphere containing the hydrogen gas reacted with the aromatizing catalyst, by supplying one of an inert gas and a reducing gas to the atmosphere; (c) reacting the aromatizing catalyst reacted with this inert gas, with an oxidizing gas; and (d) reacting the aromatizing catalyst reacted with the oxidizing gas, with a reducing gas.
    Type: Application
    Filed: March 17, 2008
    Publication date: June 3, 2010
    Applicant: MEIDENSHA CORPORATION
    Inventors: Hongtao Ma, Yuji Ogawa
  • Publication number: 20100137666
    Abstract: A catalyst for aromatizing a lower hydrocarbon, in order to increase the amount of production of useful aromatic compounds, such as benzene and toluene, by improving the methane conversion rate, the benzene formation rate, the naphthalene formation rate and the BTX formation rate (or a total formation rate of benzene, toluene and xylene) is such that molybdenum and silver are loaded on a metallosilicate as a substrate. It is more preferable to obtain the aromatizing catalyst by loading molybdenum and silver after modifying a zeolite formed of the metallosilicate with a silane compound that has a molecular diameter larger than a pore diameter of the zeolite and that has an amino group, which selectively reacts at a Bronsted acid point of the zeolite, and a straight-chain hydrocarbon group.
    Type: Application
    Filed: March 28, 2008
    Publication date: June 3, 2010
    Inventors: Shinichi Yamada, Tomohiro Yamada, Yuji Ogawa, Takuya Hatagishi, Yo Yamamoto, Yoshio Sugiyama
  • Patent number: 7719857
    Abstract: A structure of mounting a shield cover according to the present invention includes a shield cover having an insertion part which is inserted into a gap formed between a circuit substrate and a shield cover fastening part along the circuit substrate. The insertion part of the shield cover includes a convex part that is elastic and deformable, and the end of the insertion part and the shield cover fastening part come in contact with each other by the elasticity with the convex part being in contact with the circuit substrate as the fulcrum.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: May 18, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yuji Ogawa
  • Publication number: 20100053620
    Abstract: An automatic analyzer including a light source device. The light source device includes a plurality of light sources that emit respective lights of different peak wavelengths, in which a wavelength range of one of the light emitted contains the peak wavelength of the other light emitted from the other light source; and a mixing unit that mixes the respective lights emitted from the light sources. The light source device outputs a light having a desired mixed peak wavelength that is different from the peak wavelengths.
    Type: Application
    Filed: November 5, 2009
    Publication date: March 4, 2010
    Applicant: Beckman Coulter, Inc.
    Inventor: Yuji Ogawa
  • Publication number: 20100045994
    Abstract: A photometric apparatus and an automatic analyzer in which liquid samples contained in vessels are measured with light of different wavelengths while the vessels are transferred are provided. A photometric apparatus includes light sources that are arranged in the movement direction of a vessel and emit light of different wavelengths, light-receiving devices that are located opposing the light sources with the vessels interposed inbetween and receive light of different wavelengths emitted from the light sources. The arrangement length of light sources along the movement direction of the vessels is shorter than the arrangement pitch of the vessels.
    Type: Application
    Filed: November 5, 2009
    Publication date: February 25, 2010
    Applicant: Beckman Coulter, Inc.
    Inventor: Yuji Ogawa
  • Publication number: 20100016647
    Abstract: A catalyst for producing aromatic compounds from lower hydrocarbons while improving activity life stability of methane conversion rate; benzene formation rate; naphthalene formation rate; and total formation rate of benzene, toluene and xylene is formed by loading molybdenum and copper on metallo-silicate serving as a substrate and then calcining the metallo-silicate. When the catalyst is reacted with a reaction gas containing lower hydrocarbons and carbonic acid gas, aromatic compounds are produced. In order to obtain the catalyst, it is preferable that molybdenum and copper are loaded on zeolite formed of metallo-silicate after the zeolite is treated with a silane compound larger than a pore of the zeolite in diameter and having an amino group and a straight-chain hydrocarbon group, the amino group being able to selectively react with the zeolite at a Bronsted acid point of the zeolite. It is preferable that a loaded amount of molybdenum is within a range of from 2 to 12 wt.
    Type: Application
    Filed: February 13, 2008
    Publication date: January 21, 2010
    Applicant: MEIDENSHA CORPORATION
    Inventors: Shinichi Yamada, Tomohiro Yamada, Yuji Ogawa, Hirokazu Akiyama, Takuya Hatagishi
  • Publication number: 20090277304
    Abstract: According to exemplary embodiments of the present invention, a process for production of an amorphous alloy can be provided at low cost by, e.g., efficiently removing magnetic-property-degrading Al and Ti when using inexpensive Fe—B or scrap as an amorphous alloy raw material. An exemplary embodiment of the process for production of an Fe-based amorphous alloy ribbon can comprise, by mass, e.g., 2 to 4% of B, 1 to 6% of Si, and a balance of Fe and unavoidable materials is provided. For example, it can be determined whether the molten alloy obtained by melting a main raw material has a Ti concentration or Al concentration of 0.005 mass % or greater: When such even occurs, iron oxide source having an iron content of 55 mass % or greater can be added thereto to reduce both Ti and Al to less than 0.005 mass % by oxidative removal. Alternatively, it is possible to determine whether the main raw material has a composition whose Ti concentration or Al concentration is 0.
    Type: Application
    Filed: April 6, 2007
    Publication date: November 12, 2009
    Applicant: Nippon Steel Corporation
    Inventors: Yuji Ogawa, Takeshi Imai, Shigekatsu Ozaki
  • Publication number: 20090240093
    Abstract: An aromatic compound, particularly benzene, is stably produced in the presence of a catalyst from a lower hydrocarbon having 2 or more carbon atoms, particularly from an ethane-containing gas composition such as ethane gas and natural gas. Disclosed is a process for producing an aromatic compound by reacting ethane or an ethane-containing raw gas in the presence of a catalyst. The catalyst may comprise molybdenum carried on metallosilicate such as H-type ZSM-5H or H-type MCM-22. In the reaction, the temperature is from 550 to 750° C., preferably not lower than 600° C. and not higher than 680° C. Additionally, the raw gas further contains methane and hydrogen is added thereto, thereby improving the production efficiency and stability.
    Type: Application
    Filed: September 29, 2006
    Publication date: September 24, 2009
    Inventors: Masaru Ichikawa, Ryoichi Kojima, Yuji Ogawa, Masamichi Kuramoto
  • Patent number: 7563014
    Abstract: A backlight unit including a light guide plate, a linear light source disposed in the light incident side of the light guide plate, a reflective sheet disposed in the rear side of the light guide plate, and a heat spreader sheet disposed in the rear side of the reflective sheet. In this backlight unit, an edge of the heat spreader sheet is placed more inner than the light incident side surface of the light guide plate in the vicinity of an electrode portion of the linear light source. Furthermore another edge of the heat spreader sheet is substantially aligned with an corresponding side surface other than the incident side surface of the light guide plate.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: July 21, 2009
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yuji Ogawa
  • Publication number: 20080312483
    Abstract: A process for producing aromatic hydrocarbons and hydrogen, in which a lower hydrocarbons-containing feedstock gas is reformed by being supplied to and being brought into contact with a catalyst under high temperature conditions thereby forming aromatic hydrocarbons and hydrogen. The method includes the steps of (a) supplying a hydrogen gas together with the feedstock gas during a supply of the feedstock gas; and (b) suspending the supply of the feedstock gas for a certain period of time while keeping a condition of a supply of the hydrogen gas. The catalyst is exemplified by a metallo-silicate carrying molybdenum and a metallo-silicate carrying molybdenum and rhodium. An amount of the hydrogen gas supplied together with the feedstock gas is set to be preferably larger than 2% and smaller than 10%, more preferably within a range of from 4 to 8%, much more preferably 8%.
    Type: Application
    Filed: July 28, 2005
    Publication date: December 18, 2008
    Inventors: Masaru Ichikawa, Ryoichi Kojima, Yuji Ogawa, Masamichi Kuramoto
  • Publication number: 20080180931
    Abstract: A structure of mounting a shield cover according to the present invention includes a shield cover having an insertion part which is inserted into a gap formed between a circuit substrate and a shield cover fastening part along the circuit substrate. The insertion part of the shield cover includes a convex part that is elastic and deformable, and the end of the insertion part and the shield cover fastening part come in contact with each other by the elasticity with the convex part being in contact with the circuit substrate as the fulcrum.
    Type: Application
    Filed: October 30, 2007
    Publication date: July 31, 2008
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Yuji OGAWA
  • Publication number: 20070091643
    Abstract: There is provided a backlight unit including a light guide plate, a linear light source disposed in the light incident side of the light guide plate, a reflective sheet disposed in the rear side of the light guide plate, and a heat spreader sheet disposed in the rear side of the reflective sheet. In this backlight unit, an edge of the heat spreader sheet is placed more inner than the light incident side surface of the light guide plate in the vicinity of an electrode portion of the linear light source. Furthermore another edge of the heat spreader sheet is substantially aligned with an corresponding side surface other than the incident side surface of the light guide plate. This backlight unit suppresses the reduction in the life of the light source and the occurrence of uneven display.
    Type: Application
    Filed: October 11, 2006
    Publication date: April 26, 2007
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Yuji Ogawa
  • Patent number: 7183125
    Abstract: To provide a high quality SAW device with enhanced productivity, wherein an outer face of a SAW chip mounted on a mounting substrate is covered with a heat-softened resin sheet and resin is filled on the SAW chip to form an airtight space below an IDT in the SAW device.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: February 27, 2007
    Assignee: Toyo Communication Equipment Co., Ltd.
    Inventors: Tatsuya Anzai, Yuji Ogawa, Yasuhide Onozawa