Patents by Inventor Yukiteru Matsui

Yukiteru Matsui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8575030
    Abstract: According to one embodiment, a semiconductor device manufacturing method is disclosed. The method can include polishing a film on a semiconductor substrate by pressing the film against a polishing pad. Polishing the film comprises performing first polishing in which an entrance temperature of the polishing pad is adjusted to 40° C. (inclusive) to 50° C. (inclusive), and an exit temperature of the polishing pad is adjusted to be higher by 5° C. or more than the entrance temperature. Polishing the film comprises performing second polishing in which the entrance temperature is adjusted to 30° C. or less, and the exit temperature is adjusted to be higher by 5° C. or more than the entrance temperature.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: November 5, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Gaku Minamihaba, Yukiteru Matsui, Nobuyuki Kurashima, Hajime Eda
  • Publication number: 20130273817
    Abstract: According to one embodiment, the method of manufacturing a semiconductor device includes contacting a film formed on a semiconductor substrate with a rotating polishing pad which is supported on a turntable, and feeding polishing foam to a region of the polishing pad with which the film is contacted, thereby polishing the film. The polishing foam is obtained by turning the aqueous dispersion into a foamy body. The aqueous dispersion includes 0.01-20% by mass of abrasive grain and 0.01-1% by mass of foam forming and retaining agent, all based on a total mass of the aqueous dispersion.
    Type: Application
    Filed: June 11, 2013
    Publication date: October 17, 2013
    Inventors: Gaku Minamihaba, Yukiteru Matsui
  • Patent number: 8480915
    Abstract: According to one embodiment, the method of manufacturing a semiconductor device includes contacting a film formed on a semiconductor substrate with a rotating polishing pad which is supported on a turntable, and feeding polishing foam to a region of the polishing pad with which the film is contacted, thereby polishing the film. The polishing foam is obtained by turning the aqueous dispersion into a foamy body. The aqueous dispersion includes 0.01-20% by mass of abrasive grain and 0.01-1% by mass of foam forming and retaining agent, all based on a total mass of the aqueous dispersion.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: July 9, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Gaku Minamihaba, Yukiteru Matsui
  • Publication number: 20130157464
    Abstract: According to one embodiment, a planarizing method is proposed. In the planarizing method, a surface to be processed of an object to be processed including a silicon oxide film is planarized in a processing solution by bringing the surface to be processed into contact with or close proximity with the surface of a solid-state plate on which fluorine is adsorbed. The bonding energy between fluorine and the solid-state plate is lower than that between fluorine and silicon.
    Type: Application
    Filed: September 5, 2012
    Publication date: June 20, 2013
    Inventors: Akifumi GAWASE, Yukiteru Matsui
  • Publication number: 20130119013
    Abstract: According to one embodiment, a method is disclosed for chemical planarization. The method can include forming a surface layer on a to-be-processed film having irregularity. The surface layer binds to or adsorbs onto the to-be-processed film along the irregularity to suppress dissolution of the to-be-processed film. The method can include planarizing the to-be-processed film in a processing solution dissolving the to-be-processed film, by rotating the to-be-processed film and a processing body while the to-be-processed film contacting the processing body via the surface layer, removing the surface layer on convex portions of the irregularity while leaving the surface layer on concave portions of the irregularity and making dissolution degree of the convex portions larger than dissolution degree of the concave portions.
    Type: Application
    Filed: March 16, 2012
    Publication date: May 16, 2013
    Inventors: Yukiteru MATSUI, Masako KODERA, Hiroshi TOMITA, Gaku MINAMIHABA, Akifumi GAWASE
  • Publication number: 20130115774
    Abstract: According to one embodiment, a method for chemical planarization includes: preparing a treatment liquid containing a hydrosilicofluoric acid aqueous solution containing silicon dioxide dissolved therein at a saturated concentration; and decreasing height of irregularity of a silicon dioxide film. In the decreasing, dissolution rate of convex portions is made larger than dissolution rate of concave portion of the irregularity while changing equilibrium state of the treatment liquid at areas being in contact with the convex portions of the irregularity, in a state in which the silicon dioxide film having the irregularity is brought into contact with the treatment liquid.
    Type: Application
    Filed: March 16, 2012
    Publication date: May 9, 2013
    Inventors: Masako Kodera, Yukiteru Matsui
  • Publication number: 20130115855
    Abstract: According to one embodiment, a polishing method comprises pressing a substrate being rotated against a polishing pad being rotated and supplying slurry on the polishing pad, measuring a surface temperature of the polishing pad, and when the surface temperature is not less than a predetermined temperature, jetting jet stream containing supercooled droplets from a nozzle having a narrow portion toward the polishing pad.
    Type: Application
    Filed: March 8, 2012
    Publication date: May 9, 2013
    Inventors: Masako KODERA, Yukiteru MATSUI
  • Publication number: 20130095661
    Abstract: According to one embodiment, a CMP method includes starting a polishing of a silicon oxide film by using a slurry including a silicon oxide abrasive and a polishing stopper film including a silicon nitride film, and stopping the polishing when the polishing stopper is exposed. The slurry includes a first water-soluble polymer with a weight-average molecular weight of 50000 or more and 5000000 or less, and a second water-soluble polymer with a weight-average molecular weight of 1000 or more and 10000 or less.
    Type: Application
    Filed: March 23, 2012
    Publication date: April 18, 2013
    Inventors: Akifumi GAWASE, Yukiteru Matsui, Gaku Minamihaba, Hajime Eda
  • Publication number: 20130078784
    Abstract: According to one embodiment, the CMP slurry includes abrasive particles made of colloidal silica in an amount of 0.5 to 3% by mass of a total mass of the CMP slurry, and a polycarboxylic acid having a weight average molecular weight of from 500 to 10,000, in an amount of 0.1 to 1% by mass of the total mass of the CMP slurry. 50 to 90% by mass of the abrasive particles each has a primary particle diameter of 3 to 10 nm. The CMP slurry has a pH within a range of 2.5 to 4.5.
    Type: Application
    Filed: March 21, 2012
    Publication date: March 28, 2013
    Inventors: Gaku MINAMIHABA, Akifumi Gawase, Yukiteru Matsui, Hajime Eda
  • Publication number: 20130045596
    Abstract: According to one embodiment, a semiconductor device manufacturing method is provided. In the semiconductor device manufacturing method, a process target film is formed on a semiconductor substrate, and the surface of the process target film is polished by a CMP method. The CMP method comprises heating a rotating polishing pad from a first temperature to a second temperature higher than the first temperature, and bringing the surface of the process target film into contact with the polishing pad heated to the second temperature.
    Type: Application
    Filed: March 23, 2012
    Publication date: February 21, 2013
    Inventors: Hajime EDA, Yukiteru MATSUI
  • Publication number: 20130040456
    Abstract: According to one embodiment, a method of manufacturing a semiconductor device is provided. In the method, a groove is formed in a insulating film on a semiconductor substrate. An underlayer film is formed on the insulating film. A metal film is formed on the underlayer film. First polishing, in which the metal film is removed, is performed by supplying a first CMP slurry containing metal ions. The surfaces of the polishing pad and the semiconductor substrate are cleaned by supplying organic acid and pure water. Second polishing, in which the underlayer film is removed from the portion other than the groove, is performed by supplying a second CMP slurry different from the first CMP slurry.
    Type: Application
    Filed: March 23, 2012
    Publication date: February 14, 2013
    Inventors: Hajime EDA, Yukiteru Matsui, Gaku Minamihaba, Akifumi Gawase
  • Publication number: 20120258597
    Abstract: According to one embodiment, the method of manufacturing a semiconductor device includes contacting a film formed on a semiconductor substrate with a rotating polishing pad which is supported on a turntable, and feeding polishing foam to a region of the polishing pad with which the film is contacted, thereby polishing the film. The polishing foam is obtained by turning the aqueous dispersion into a foamy body. The aqueous dispersion includes 0.01-20% by mass of abrasive grain and 0.01-1% by mass of foam forming and retaining agent, all based on a total mass of the aqueous dispersion.
    Type: Application
    Filed: September 19, 2011
    Publication date: October 11, 2012
    Inventors: Gaku Minamihaba, Yukiteru Matsui
  • Publication number: 20120220195
    Abstract: According to one embodiment, a CMP apparatus includes a supplying portion supplying a slurry to a surface portion of a polishing pad including water-soluble particles, a holding portion contacting an object to be polished with the surface portion of the polishing pad in a condition of holding the object, a temperature setting portion on the surface portion of the polishing pad, the temperature setting portion setting a temperature of the surface of the polishing pad. A control portion executes a first polishing step and a second polishing step after the first polishing step, the object is polished in a condition of setting the temperature of the surface of the polishing pad within a first temperature range in the first polishing step, and the object is polished in a condition of setting the temperature of the surface of the polishing pad within a second temperature range in the second polishing step.
    Type: Application
    Filed: September 15, 2011
    Publication date: August 30, 2012
    Inventors: Akifumi GAWASE, Yukiteru Matsui
  • Patent number: 8119517
    Abstract: A chemical mechanical polishing method comprises polishing an organic film using a slurry including polymer particles having a surface functional group and a water-soluble polymer.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: February 21, 2012
    Assignees: JSR Corporation, Kabushiki Kaisha Toshiba
    Inventors: Hirotaka Shida, Yukiteru Matsui, Atsushi Shigeta, Shinichi Hirasawa, Hirokazu Kato, Masako Kinoshita, Takeshi Nishioka, Hiroyuki Yano
  • Patent number: 8114776
    Abstract: In a method of manufacturing a semiconductor device for planarizing a silicon oxide film with chemical mechanical polishing using a silicon film formed on a semiconductor substrate as a stopper film, a surface modification film for hydrophilizing the surface of the silicon film is formed on an upper layer of the polysilicon film, and slurry for the chemical mechanical polishing contains cerium oxide particles, a surface active agent, and resin particles having a cationic or anionic functional group.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: February 14, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hajime Eda, Yukiteru Matsui, Atsushi Shigeta, Takatoshi Ono, Satoko Seta
  • Publication number: 20120034846
    Abstract: According to one embodiment, a semiconductor device manufacturing method is disclosed. The method can include polishing a film on a semiconductor substrate by pressing the film against a polishing pad. Polishing the film comprises performing first polishing in which an entrance temperature of the polishing pad is adjusted to 40° C. (inclusive) to 50° C. (inclusive), and an exit temperature of the polishing pad is adjusted to be higher by 5° C. or more than the entrance temperature. Polishing the film comprises performing second polishing in which the entrance temperature is adjusted to 30° C. or less, and the exit temperature is adjusted to be higher by 5° C. or more than the entrance temperature.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 9, 2012
    Inventors: Gaku MINAMIHABA, Yukiteru Matsui, Nobuyuki Kurashima, Hajime Eda
  • Publication number: 20110294291
    Abstract: According to one embodiment, a semiconductor device includes a switch element provided in a surface area of a semiconductor substrate, a contact plug with an upper surface and a lower surface, and a function element provided on the upper surface of the contact plug. The lower surface of the contact plug is connected to the switch element. The upper surface of the contact plug has a maximum roughness of 0.2 nm or less.
    Type: Application
    Filed: February 25, 2011
    Publication date: December 1, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yukiteru Matsui, Gaku Minamihaba, Hajime Eda, Masayoshi Iwayama, Minoru Amano, Masatoshi Yoshikawa, Motoyuki Sato, Kyoichi Suguro, Masako Kodera
  • Patent number: 7985685
    Abstract: A method for manufacturing a semiconductor device is provided, the method includes forming a coated film by coating a solution containing a solvent and an organic component above an insulating film located above a semiconductor substrate and having a recess, baking the coated film at a first temperature which does not accomplish cross-linking of the organic component to obtain an organic film precursor, polishing the organic film precursor using a slurry containing resin particles to leave the organic film precursor in the recess, baking the left organic film precursor at a second temperature which is higher than the first temperature to remove the solvent to obtain a first organic film embedded in the recess, forming a second organic film on the insulating film, thereby obtaining an underlying film, forming an intermediate layer and a resist film successively above the underlying film, and subjecting the resist film to patterning exposure.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: July 26, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yukiteru Matsui, Masako Kinoshita, Seiro Miyoshi, Yoshikuni Tateyama, Takeshi Nishioka, Hiroyuki Yano
  • Publication number: 20110081832
    Abstract: In one embodiment, a polishing device includes: a rotatable turntable, a holding unit, a separation wall, a slurry supply tube, and a cooling medium supply tube. On an upper surface of the rotatable turntable, a polishing pad is attached. The holding unit rotatably holds an object to be polished and disposes a polished surface of the object to be polished in a manner to face the polishing pad. The separation wall abuts on the upper surface of the polishing pad and sections the polishing pad into a polished region in which the holding unit is provided and an unpolished region in which the holding unit is not provided. The slurry supply tube supplies a slurry to the upper surface of the polishing pad in a polished region side. The cooling medium supply tube supplies a cooling medium to the upper surface of the polishing pad in the unpolished region.
    Type: Application
    Filed: June 4, 2010
    Publication date: April 7, 2011
    Inventors: Kenro Nakamura, Yukiteru Matsui, Takeshi Nishioka
  • Publication number: 20110076833
    Abstract: In a method of manufacturing a semiconductor device for planarizing a silicon oxide film with chemical mechanical polishing using a silicon film formed on a semiconductor substrate as a stopper film, a surface modification film for hydrophilizing the surface of the silicon film is formed on an upper layer of the polysilicon film, and slurry for the chemical mechanical polishing contains cerium oxide particles, a surface active agent, and resin particles having a cationic or anionic functional group.
    Type: Application
    Filed: May 17, 2010
    Publication date: March 31, 2011
    Inventors: Hajime Eda, Yukiteru Matsui, Atsushi Shigeta, Takatoshi Ono, Satoko Seta