Patents by Inventor Yuksel Temiz

Yuksel Temiz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10675620
    Abstract: The present invention is notably directed to method of fabrication of a microfluidic chip, comprising: providing a substrate, a face of which is covered by an electrically insulating layer; obtaining a resist layer covering one or more selected portions of the electrically insulating layer, at least a remaining portion of said electrically insulating layer not being covered by the resist layer; partially etching with a wet etchant a surface of the remaining portion of the electrically insulating layer to create a recess and/or an undercut under the resist layer; depositing the electrically conductive layer on the etched surface, such that the electrically conductive layer reaches the created recess and/or undercut; and removing the resist layer to expose a portion of the electrically insulating layer adjoining a contiguous portion of the electrically conductive layer. The present invention is further directed to microfluidic chips obtainable by such methods.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: June 9, 2020
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Tobias Guenzler, Yuksel Temiz, Tino Treiber
  • Publication number: 20200116645
    Abstract: A test device is configured for diagnostic testing and includes an optical readable medium, in turn including a pattern of spots of material arranged on a surface of the device. Several patterns may be provided. The patterns accordingly formed may be human and/or machine readable. They may notably encode security information, e.g., indicating whether the device has already been used. The spots may notably be inkjet spotted. In addition, a method is provided for decoding information encoded in a pattern of such a test device. In embodiments, liquid is introduced in the device, which comprises additional spots having a substantially different solubility than spots forming the actual pattern. Thus, the additional spots get solubilized in and flushed by the liquid as the latter wets them, and an initially hidden pattern may be read, which is formed of the remaining spots (not solubilized). Encoding methods are also provided.
    Type: Application
    Filed: December 15, 2019
    Publication date: April 16, 2020
    Inventors: Emmanuel Delamarche, Onur Goekce, Yuksel Temiz
  • Publication number: 20200108385
    Abstract: A microfluidic device includes a surface, which defines a flow path for a liquid, and a liquid inlet, which is in fluid communication with said surface, so as for a liquid introduced via the inlet to advance along a propagation direction on the flow path. Also included are a set of two or more electrical contacts, and a set of electrodes which include sensing portions that extend across the flow path, transversally to the propagation direction. The electrodes are connected to the two or more electrical contacts. Also included are material spots on at least some of the sensing portions of the electrodes. Still, material spots of a same material are only on a subset of the sensing portions of the electrodes, so that the spots can alter an electrical signal detected from the electrical contacts, upon a liquid advancing along the flow path, in operation of the device.
    Type: Application
    Filed: October 4, 2018
    Publication date: April 9, 2020
    Inventors: Yuksel Temiz, Onur Gökçe, Elisa Hemmig, Emmanuel Delamarche
  • Publication number: 20200018723
    Abstract: An assembly is provided for interfacing with a microfluidic chip having at least one microscopic channel configured to receive a liquid sample for analysis. The assembly includes a chip carrier, an electronics module, an optical module, and a mechanical module. The chip carrier includes a base and a cover defining a cavity to receive the microfluidic chip. The electronics module includes a signal generator which applies at least one electrokinetic signal electrode(s) of the chip. The optical module includes an excitation radiation source which causes excitation radiation to impinge on the sample, and an emission radiation detector which detects radiation emitted from the sample. The mechanical module includes a chip-carrier receiving structure, relatable with respect to the optical module for focus and at least one degree of translational freedom.
    Type: Application
    Filed: September 21, 2019
    Publication date: January 16, 2020
    Inventors: Jaione T. Azpiroz, Emmanuel Delamarche, Claudius Feger, Ricardo L. Ohta, Mathias B. Steiner, Yuksel Temiz
  • Patent number: 10500586
    Abstract: A microfluidic device and method for fabrication includes a microfluidic channel that has a closed portion, which comprises: a liquid pathway formed by a wetting area; and an anti-wetting area extending along and contiguously with the liquid pathway. The anti-wetting area is configured so as to provide a vent to evacuate gas along the anti-wetting area.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: December 10, 2019
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Yuksel Temiz
  • Patent number: 10493450
    Abstract: A microfluidic device and method for fabrication includes a microfluidic channel that has a closed portion, which comprises: a liquid pathway formed by a wetting area; and an anti-wetting area extending along and contiguously with the liquid pathway. The anti-wetting area is configured so as to provide a vent to evacuate gas along the anti-wetting area.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: December 3, 2019
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Yuksel Temiz
  • Publication number: 20190331607
    Abstract: A test device is configured for diagnostic testing and includes an optical readable medium, in turn including a pattern of spots of material arranged on a surface of the device. Several patterns may be provided. The patterns accordingly formed may be human and/or machine readable. They may notably encode security information, e.g., indicating whether the device has already been used. The spots may notably be inkjet spotted. In addition, a method is provided for decoding information encoded in a pattern of such a test device. In embodiments, liquid is introduced in the device, which comprises additional spots having a substantially different solubility than spots forming the actual pattern. Thus, the additional spots get solubilized in and flushed by the liquid as the latter wets them, and an initially hidden pattern may be read, which is formed of the remaining spots (not solubilized). Encoding methods are also provided.
    Type: Application
    Filed: July 6, 2019
    Publication date: October 31, 2019
    Inventors: Emmanuel Delamarche, Onur Goekce, Yuksel Temiz
  • Publication number: 20190321819
    Abstract: A microfluidic device includes a microchannel, which defines a flow path for a liquid. It further includes a liquid-pinning trench, which is arranged so as to form an opening that extends across the flow path. In addition, the device includes an electrode extending across the flow path so as to at least partly overlap the trench. The trench and overlapping electrode make up an electrowetting gate, which allows an efficient, reliable, and easy-to-implement flow control mechanism. In addition, such a mechanism requires relatively low actuation voltages (less than 10 V) to resume the liquid flow. Thus, a microfluidic chip having gates such as described herein can be controlled with a portable system, e.g., a smartphone connectivity. The present devices may notably be embodied as point-of-care diagnostic devices. Related devices, as well as methods of operation and methods of fabrication of such devices, are also disclosed.
    Type: Application
    Filed: April 21, 2018
    Publication date: October 24, 2019
    Inventors: Yulieth Cristina Arango, Emmanuel Delamarche, Onur Gökçe, Yuksel Temiz
  • Patent number: 10444184
    Abstract: An assembly is provided for interfacing with a microfluidic chip having at least one microscopic channel configured to receive a liquid sample for analysis. The assembly includes a chip carrier, an electronics module, an optical module, and a mechanical module. The chip carrier includes a base and a cover defining a cavity to receive the microfluidic chip. The electronics module includes a signal generator which applies at least one electrokinetic signal electrode(s) of the chip. The optical module includes an excitation radiation source which causes excitation radiation to impinge on the sample, and an emission radiation detector which detects radiation emitted from the sample. The mechanical module includes a chip-carrier receiving structure, relatable with respect to the optical module for focus and at least one degree of translational freedom.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 15, 2019
    Assignee: International Business Machines Corporation
    Inventors: Jaione T. Azpiroz, Emmanuel Delamarche, Claudius Feger, Ricardo L. Ohta, Mathias B. Steiner, Yuksel Temiz
  • Publication number: 20190279525
    Abstract: A system, method and computer program product to train a user to reproduce a reference motion with a haptic feedback system having one or more sensors. The method includes receiving a user-selection of a reference motion pattern, selected from a plurality of motion patterns each of which is machine-interpretable as a time-ordered sequence of reference datasets. The sequence corresponds to a respective reference motion. The method includes capturing a user motion of a user attempting to reproduce the reference motion corresponding to the selected, reference motion pattern. This is accomplished by sampling, via the haptic feedback system, sensor values obtained from the one or more sensors, to obtain appraisal datasets that are representative of the captured user motion. A real-time haptic feedback is provided to the user while capturing the user motion based on comparisons between the appraisal datasets obtained and the reference datasets of the selected, reference motion pattern.
    Type: Application
    Filed: March 6, 2018
    Publication date: September 12, 2019
    Inventors: Jonas Weiss, Erich M. Ruetsche, Patricia Sagmeister, Thomas Gschwind, Yuksel Temiz, John M. Cohn
  • Patent number: 10369567
    Abstract: A microfluidic chip comprising a microchannel fillable with a liquid, the microchannel comprises a pair of electrodes, and a liquid flow path defined between the electrodes, wherein each of the electrodes extends along the flow path and parallel to a direction of a liquid filling the microchannel, in operation, and an electrical circuitry connected to each of the electrodes and configured to continuously measure, via the electrodes, a capacitance of the electrodes being wet by a liquid continuously filling the flow path, as a function of time, in operation.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: August 6, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Emmanuel Delamarche, Yuksel Temiz
  • Patent number: 10345244
    Abstract: A test device is configured for diagnostic testing and includes an optical readable medium, in turn including a pattern of spots of material arranged on a surface of the device. Several patterns may be provided. The patterns accordingly formed may be human and/or machine readable. They may notably encode security information, e.g., indicating whether the device has already been used. The spots may notably be inkjet spotted. In addition, a method is provided for decoding information encoded in a pattern of such a test device. In embodiments, liquid is introduced in the device, which comprises additional spots having a substantially different solubility than spots forming the actual pattern. Thus, the additional spots get solubilized in and flushed by the liquid as the latter wets them, and an initially hidden pattern may be read, which is formed of the remaining spots (not solubilized). Encoding methods are also provided.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: July 9, 2019
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Onur Goekce, Yuksel Temiz
  • Publication number: 20190143321
    Abstract: The present invention is notably directed to method of fabrication of a microfluidic chip, comprising: providing a substrate, a face of which is covered by an electrically insulating layer; obtaining a resist layer covering one or more selected portions of the electrically insulating layer, at least a remaining portion of said electrically insulating layer not being covered by the resist layer; partially etching with a wet etchant a surface of the remaining portion of the electrically insulating layer to create a recess and/or an undercut under the resist layer; depositing the electrically conductive layer on the etched surface, such that the electrically conductive layer reaches the created recess and/or undercut; and removing the resist layer to expose a portion of the electrically insulating layer adjoining a contiguous portion of the electrically conductive layer. The present invention is further directed to microfluidic chips obtainable by such methods.
    Type: Application
    Filed: December 24, 2018
    Publication date: May 16, 2019
    Inventors: Emmanuel Delamarche, TOBIAS GUENZLER, Yuksel Temiz, Tino Treiber
  • Publication number: 20190094178
    Abstract: The invention is notably directed to a microfluidic device. The device comprises a substrate with a microchannel formed as a groove on a main surface of the substrate. The device further comprises one or more conduits extending parallel to the main surface of the substrate, and from a lateral surface of the substrate up to a lateral wall of the microchannel. The one or more conduits are configured so as to allow insertion of one or more electrodes therein, respectively, and such that an end of each of the one or more electrodes can reach into the microchannel. The invention is further directed to related sets of components, which include the above microfluidic device, as well as a housing, with electronics, and, possibly, a porous support (e.g., a membrane) and a cap. Biosensing applications are notably contemplated. The invention is further directed to methods of operating a microfluidic device.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 28, 2019
    Inventors: Emmanuel Delamarche, Yuksel Temiz, Sufi Zafar
  • Patent number: 10159976
    Abstract: The present invention is notably directed to method of fabrication of a microfluidic chip (1), comprising: providing (S1-S7) a substrate (10), a face (F) of which is covered by an electrically insulating layer (30); obtaining (S8) a resist layer (40) covering one or more selected portions (P1) of the electrically insulating layer (30), at least a remaining portion (P2) of said electrically insulating layer (30) not being covered by the resist layer; partially etching (S9) with a wet etchant (E) a surface of the remaining portion (P2) of the electrically insulating layer (30) to create a recess (40r) and/or an undercut (40u) under the resist layer (40); depositing (S10) the electrically conductive layer (50) on the etched surface (35), such that the electrically conductive layer reaches the created recess (40r) and/or undercut (40u); and removing (S11) the resist layer (40) to expose a portion (P1) of the electrically insulating layer adjoining a contiguous portion (P2) of the electrically conductive layer (50
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: December 25, 2018
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Tobias Guenzler, Yuksel Temiz, Tino Treiber
  • Publication number: 20180361380
    Abstract: The present invention is notably directed to methods of fabrication of a microfluidic chip package or assembly (1), comprising: providing (S1) a substrate (10, 30) having at least one block (14, 14a) comprising one or more microfluidic structures on a face (F) of the substrate; partially cutting (S2) into the substrate to obtain partial cuts (10c), such that a residual thickness of the substrate at the level of the partial cuts (10c) enables singulation of said at least one block (14, 14a); cleaning (S4) said at least one block; and applying (S5-S7) a cover-film (62) to cover said at least one block (14, 14a), whereby at least one covered block is obtained, the applied cover film still enabling singulation of each covered block, wherein each covered block corresponds to a microfluidic chip after singulation. The present invention is further directed to microfluidic chips, packing or assembly, obtainable with such methods.
    Type: Application
    Filed: August 27, 2018
    Publication date: December 20, 2018
    Inventors: Emmanuel Delamarche, Yuksel Temiz
  • Patent number: 10112193
    Abstract: The present invention is notably directed to methods of fabrication of a microfluidic chip package or assembly (1), comprising: providing (S1) a substrate (10, 30) having at least one block (14, 14a) comprising one or more microfluidic structures on a face (F) of the substrate; partially cutting (S2) into the substrate to obtain partial cuts (10c), such that a residual thickness of the substrate at the level of the partial cuts (10c) enables singulation of said at least one block (14, 14a); cleaning (S4) said at least one block; and applying (S5-S7) a cover-film (62) to cover said at least one block (14, 14a), whereby at least one covered block is obtained, the applied cover film still enabling singulation of each covered block, wherein each covered block corresponds to a microfluidic chip after singulation. The present invention is further directed to microfluidic chips, packing or assembly, obtainable with such methods.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: October 30, 2018
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Yuksel Temiz
  • Publication number: 20180272348
    Abstract: Method, apparatus, and computer program product for a microfluidic channel having a cover opposite its bottom, such that the cover allows visual inspection inside the channel, and having electrodes with patterned planar conducting materials, integrated onto its bottom. Using the planar conducting materials, once a fluid sample with suspended microparticles is applied into the channel, highly localized modulated electric field distributions are generated inside the channel and the fluid sample. This generated field causes the inducing of dielectrophoretic (DEP) forces in such a way that the DEP forces gradually increase along the length of the channel occupied by the electrodes. These DEP forces counteract the hydrodynamic drag of the flow acting on the particles suspended in the fluid.
    Type: Application
    Filed: March 21, 2017
    Publication date: September 27, 2018
    Inventors: Jaione Tirapu Azpiroz, Emmanuel Delamarche, Yuksel Temiz
  • Patent number: 10081015
    Abstract: A device for trapping at least one microparticle in a fluid flow is suggested. The device comprises a trapping element and an electrode. The trapping element is configured for trapping the at least one microparticle and has at least one recess for receiving the at least one microparticle. The electrode is configured for generating an asymmetric electric field. In operation, at least one microparticle of a plurality of microparticles passing through the asymmetric electric field is forced into the at least one recess of the trapping element.
    Type: Grant
    Filed: July 12, 2015
    Date of Patent: September 25, 2018
    Assignee: International Business Machines Corporation
    Inventors: Jaione Tirapu Azpiroz, Emmanuel Delamarche, Claudius Feger, Yuksel Temiz
  • Patent number: 9962714
    Abstract: A microchannel for processing microparticles in a fluid flow comprises a first and second pairs of electrodes. The first pair of electrodes is configured for generating an asymmetric first electric field and for sorting the microparticles to provide sorted microparticles. The second pair of electrodes is configured for generating an asymmetric second electric field and for trapping at least some of the sorted microparticles.
    Type: Grant
    Filed: July 12, 2015
    Date of Patent: May 8, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jaione Tirapu Azpiroz, Emmanuel Delamarche, Claudius Feger, Yuksel Temiz